Differential Topology

PART(1)

Smooth manifold.

1 -smooth structure and smooth manifold.

Definition:.

Let $U, V \subseteq \mathbb{R}^{m}$ are open subset. A map $f: U \rightarrow V$ is called a differentiable of class c^{r}, if the functions $f_{i}=f_{i}\left(x^{1}, \ldots x^{m}\right) ; i=1, \ldots n$ have the partial derivative up to order r.
i.e. $f\left(x^{1}, \ldots, x^{m}\right)=f_{1} 1\left(x^{1}, \ldots, x^{m}\right), \ldots f_{n}\left(x^{1}, \ldots x^{m}\right)$ have $\frac{\partial^{r} f_{k}}{\partial^{r_{1} x_{1}, \ldots \partial^{r} s x_{m}}}, r_{1}+\cdots+r_{s}=r$.

Definition:

If f is differentiable and bijective and f^{-1} differentiable ,then we say that f is diffeomorphisim U on to V and then U and V are said to be diffeomorphic .

Remark:

We will assume that $r=\infty$ and in this case, we say that f is a smooth.

Definition:

Suppose that M is a housdorff space, an open chart of dimension n in M
Is a pair (U, φ), where U is an open set in M and $\varphi: U \longrightarrow \varphi(U) \subseteq \mathbb{R}^{n}$ is a homeomorphisim on open sub set of \mathbb{R}^{n} for $\in U, \varphi(p)=\left(x^{1}, \ldots, x^{n}\right)$ are said to be a local coordinants of the point $p \in U$.

Definition:

Two charts $(U, \varphi),(V, \psi)$, are said to be a smooth connection, if the map :

$$
\psi o \varphi^{-1}: \phi(U \cap V) \longrightarrow \psi(U \cap V)
$$

is diffeomorphisim in Euclidean space.

Definition:

A family of n -dimensional charts on $\mathrm{M}\left\{\left(U_{i}, \varphi_{i}\right)\right\}$ is called an atlas if

1) All charts are to be pairwise smooth connection;
2) $\mathrm{U}_{i \in I} U_{i}=M$.

Definition:

An atlas on M is said to be a maximal , if every chart on M which is a smooth connection with each chart of this atlas ,then its belong to this atlas. i.e.atlas in M is maximal if its no contained in any other atlas.

Definition:

A maximal atlas is called a smooth structure .

Definition:

A space M with smooth structure is called a smooth manifold.

Definition:

Two smooth structure on M are said to be equivalent, if each two charts are smooth connection.

Example:(about non-equivelent smooth structure)
Suppose $\mathbf{M}=\mathbb{R}$,

$$
\begin{gathered}
(\boldsymbol{U}, \boldsymbol{\varphi}) ; \boldsymbol{U}=\mathbb{R}, \boldsymbol{\varphi}=\boldsymbol{i d} ; \\
(\boldsymbol{V}, \boldsymbol{\varphi}) ; \boldsymbol{V}=\mathbb{R}, \boldsymbol{\psi}=\boldsymbol{x}^{3}
\end{gathered}
$$

Exampls:(about smooth manifolds)

1) $M=\mathbb{R}^{n}$ Euclidean space is an n dimensional smooth manifold.

A maximal atlas consist of one chart $\left(\mathbb{R}^{n}, 1_{\mathbb{R}^{n}}\right)$; where $1_{\mathbb{R}^{n}}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the identity map.
2) Every finite dimensional linear space is a smooth manifold.

Suppose that V is an n dimensional linear space;
Let $\alpha=\left(e_{1}, \ldots, e_{n}\right)$ be a basis for V. consider a map :

$$
\varphi_{\alpha}: V \rightarrow \mathbb{R}^{n} ; \varphi_{\alpha}(x)=\left(x^{1}, \ldots, x^{n}\right)
$$

Where $\left(x^{1}, \ldots, x^{n}\right)$ are the coordenentes of the vector $x \in V$ in the basis α. Clearly, φ_{α} is bijective and then is a homeomorphisim .

If $\beta=\left(\epsilon_{1}, \ldots, \epsilon_{n}\right)$ is an another basis in V and $\varphi_{\beta}: V \rightarrow \mathbb{R}^{n}$ given by $\varphi_{\beta}(x)=\left(x^{1}, \ldots, x^{n}\right)$; x^{1}, \ldots, x^{n} are the coordenentes of the vector $x \in V$ in the basis β

Now, $\varphi_{\alpha \beta}=\varphi_{\beta} O \varphi_{\alpha}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ givis the equation :

$$
Y^{i}=C_{j}^{i} X^{j} ; i=1, \ldots, n
$$

where $\left(C_{j}^{i}\right)$ is the transition matrix from the basis β to the basis α.
Clearly that $\varphi_{\alpha \beta}$ is diffeomorphisim .Therefore, every basis α in V generats a chart $\left(V, \varphi_{\alpha}\right)$ in V will be atlas in V and then defind a smooth structure. Therefore, V is n dimensional smooth manifold .

Remark:

Suppose that M and N are smooth manifolds of dimensions m and n respectively with the smooth structures:
$\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}_{\alpha \in A}$ and $\left\{\left(V_{\beta}, \psi_{\beta}\right)\right\}_{\beta \in B}$.
Then, the $\operatorname{set} M \times N$ has smooth structures which is generated by the family $\left\{\left(W_{\alpha \beta}, X_{\alpha \beta}\right)\right\}_{\alpha \in A, \beta \in B}$.

Where $W_{\alpha \beta}=U_{\alpha} \times V_{\beta}, X_{\alpha \beta}=\varphi_{\alpha} \times \psi_{\beta}$.
The smooth manifold $M \times N$ will be of dimension $\mathrm{n}+\mathrm{m}$ which is called a product manifold of M and N .

Clearly, this structure can be extended for any number of manifolds.
For example ,the product of any n copy of S^{1} is n dimensional smooth manifold which is denoted by T^{n} and called n dimensional torus .

2-Algebra of smooth functions on smooth manifold.

Definition:

Let M^{n} be a smooth manifold. A map $f: M \rightarrow \mathbb{R}$ is called a smooth function on M ,if for any chart (U, φ) on M , the map $f o \varphi^{-1} \varphi(U) \rightarrow \mathbb{R}$ is smooth map of Euclidean space. Denote by $C^{\infty}(M)$ to the set of all smooth functions on M .

The set $C^{\infty}(M)$ will be algebra over field \mathbb{R} with operations:

1) $(f+g)(p)=f(p)+g(p)$;
2) $(\lambda f)(p)=\lambda f(P)$;
3) $(f \cdot g)(p)=f(p) . g(p)$.

Where $p \in M, f, g \in C^{\infty}(M), \lambda \in \mathbb{R}$.
Algebra $C^{\infty}(M)$ is called an algebra of smooth functions on the manifold M .

3-Vector field on smooth manifold.

Definition:

Suppose that $C^{\infty}(M)$ is algebra of smooth functions on M . A linear operator $X: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is called a differentiation of algebra $C^{\infty}(M)$

If $\quad X(f \cdot g)=X(f) \cdot g+f \cdot X(g) ; f, g \in C^{\infty}(M) \quad$.By the another way the map $X: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is called a differentiation of algebra $C^{\infty}(M)$ if :

1) $X(f+g)=X(f)+X(g)$;
2) $X(\lambda f)=\lambda X(f)$;
3) $X(f \cdot g)=X(f) \cdot g+f \cdot X(g)$.

Where $, g \in C^{\infty}(M), \lambda \in \mathbb{R}$.
Clearly that the set $X(M)$ of all differentiations of algebra $C^{\infty}(M)$ represent a module over a ring $C^{\infty}(M)$ with operations:

1) $(X+Y)(f)=X(f)+Y(f)$;
2) $(g X)(f)=g \cdot X(f)$.

Where $X, Y \in X(M), f, g \in C^{\infty}(M)$.

Definition:

A differentiation $X(M)$ of algebra $C^{\infty}(M)$ is called a smooth vector field on a smooth manifold M. $C^{\infty}(M)$-module $X(M)$ is called a module of smooth vector fields on manifold M .

Proposition:

Let M be a smooth manifold $, X \in X(M), X(C)=0 ; \mathrm{C}$ is a constant.

Theorem:

Let (U, φ) be a local chart with coordinates $\left\{x^{1}, \ldots, x^{n}\right\}$ on a smooth manifold M , then the module $X(U)$ generated by $\left\{\frac{\partial}{x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}\right\}$, in particular, $\forall X \in X(M)$ then $X=$ $\sum_{i=1}^{n} X^{i} \frac{\partial}{\partial x^{i}}$.

Definition:

The basis $\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}$ of the module $X(U)$ is called a canonical basis.

4- Tangent vectors and tangent space

Definition:

Let M be a smooth manifold and let $p \in M$. A tangent vector X_{p} at p is a map

$$
X_{p}: C^{\infty}(U) \longrightarrow \mathbb{R}
$$

Where U is an open neighborhood of p, such that:

1) $X_{p}(\lambda f+\mu g)=\lambda X_{p}(f)+\mu X_{p}(g)$;
2) $X_{p}(f \cdot g)=X_{P}(f) \cdot g(p)+f(p) X_{p}(g)$;
for each $\lambda, \mu \in \mathbb{R}, f, g \in C^{\infty}(U)$
The set of all tangent vectors at p is called the tangent space M at p and denoted by $T_{p}(\mathrm{M})$

Note:

The tangent space $T_{p}(\mathrm{M})$ carries natural operations + and . turning it in to real vector space. i.e. For all $X_{p}, Y_{p} \in T_{p}(\mathrm{M}) f \in C^{\infty}(M), \lambda \in \mathbb{R}$,

1) $\left(X_{p}+Y_{p}\right)(f)=X_{p}(f)+Y_{p}(f)$
2) $\left(\lambda X_{p}\right)(f)=\lambda X_{p}(f)$.

Theorem:

The giving of vector field $X \in X(M)$ on n - dimension of smooth manifold M equivalent to giving family of tangent vectors $\left\{X_{p} \in T_{p}(\mathrm{M})\right\}$ on M such that: in each local chart (U, φ) with coordinates $\left\{x^{1}, \ldots, x^{n}\right\}$, the functions $X^{i}(p)=X_{p}\left(x^{i}\right)$ belong to algebra $C^{\infty}(U)$.

5-Lie algebra of vector fields on a smooth manifold.

Let M be a smooth manifold, $X(M)$ be module of it is vector fields, $X, Y \in$ $X(M)$,its easy to check that $X \circ Y$ does not be vector field. if , $g \in C^{\infty}(M)$, then:

$$
\begin{aligned}
X \circ Y(f \cdot g) & =X(Y(f \cdot g)) \\
& =X(Y(f) \cdot g+f \cdot y(g)) \\
& =X(Y(f) \cdot g+Y(f) \cdot X(g)+X(f) \cdot Y(g)+f \cdot X(Y(g)) \\
& =X \circ Y(f) \cdot g+Y(f) \cdot X(g)+X(f) \cdot Y(g)+f \cdot X \circ Y(g)
\end{aligned}
$$

In other hand if we change the vector fields X, Y we get :
$Y \circ X(f \cdot g)=Y \circ X(f) \cdot g+X(f) \cdot Y(g)+Y(f) \cdot X(g)+f \cdot(Y \circ X)(g)$
Now:
$(X \circ Y-Y \circ X)(f . g)=(X \circ Y-Y \circ X)(f) . g+f .(X \circ Y-Y \circ X)(g)$,

This mean that $(X \circ Y-Y \circ X) \in X(M)$. Denoted by $[X, Y]=(X \circ Y-Y \circ X)$

Definition:

The operation $\circ: X(M) \times X(M) \longrightarrow X(M)$ which is defined by $o(X, Y)=X o Y-Y o X=$ [X, Y] is called a commutator of X and Y and the symbole $[X, Y$] is called a commutator or Lie bracket .

Proposition:

prove that :

1) $[X, Y]=-[Y, X]$;
2) $[[X, Y], Z]+[[Y, Z] X]+,[[Z, X], Y]=0$.

Definition:

The pair $(X(M), o)$ is called a Lie algebra of smooth vector field of smooth manifold M .

Proposition:

The commutator operation is $\operatorname{not} C^{\infty}(M)$ - linear map.

Remark:

We can write the commutator of vector fields X and Y in the local chart (U, φ) with coordinates $\left\{x^{1}, \ldots, x^{n}\right\}$ as follows :

$$
\begin{gathered}
X=X^{i} \frac{\partial}{\partial x^{i}} \quad ; Y=Y^{j} \frac{\partial}{\partial x^{j}} \quad, \text { then, } \\
{[X, Y]^{i}=[X, Y]\left(x^{i}\right)=X\left(Y\left(x^{i}\right)\right)-Y\left(X\left(x^{i}\right)\right)=X\left(Y^{i}\right)-Y\left(X^{i}\right)=\frac{\partial Y^{i}}{\partial x^{i}} X^{j}-\frac{\partial X^{i}}{\partial x^{j}} Y^{j}}
\end{gathered}
$$

6-Tensor algebra of a smooth manifold.

Let V be a module over a commutative and associative ring K with identity or ($\mathrm{K}-$ module), V^{*} be dual module of K - linear functions on V with value in K . we have $V \cong$ $V^{* *}=\left(V^{*}\right)^{*}$ by the map $\tau: V \longrightarrow V^{* *}$ which is defined by $\tau(x)(w)=w(x) ; x \in V, w \in V^{*}$. The module V is called a reflexive if the map τ is isomorphisim .

Definition:

Let V be a reflexive K-module . consider a K-module $\tau_{r}^{S}(\mathrm{~V})$, the set of all maps $t: \underbrace{V \times V \times \ldots \times V}_{r \text {-times }} \times \underbrace{V^{*} \times V^{*} \times \ldots \times V^{*}}_{s \text {-times }} \rightarrow K$, which are K-linear in every argument. It is
element are called r-times covariante and s-times contravariants tensors of module V .For short are called tensors of type (r, s).

Definition:

Define an operation $\otimes: \tau_{r_{1}}^{s_{1}}(V) \times \tau_{r_{2}}^{s_{2}}(V) \longrightarrow \tau_{r_{1+2}}^{s_{1+2}}(V)$ as follows:
If $t_{1} \in \tau_{r_{1}}^{s_{1}}(V)$ and $t_{2} \in \tau_{r_{2}}^{s_{2}}(V)$, then $t_{1} \otimes t_{2} \in \tau_{r_{1+2}}^{s_{1+2}}(V)$ such that :
$\left(t_{1} \otimes t_{2}\right)\left(u_{1}, \ldots, u_{r_{1}+r_{2}}, v^{1}, \ldots, v^{s_{1+s_{2}}}\right)=$
$t_{1}\left(u_{1}, \ldots u_{r_{1}}, v^{1}, \ldots, v^{s_{1}}\right) t_{2}\left(u_{r_{1}+1}, \ldots, u_{r_{1}+r_{2}}, v^{s_{1}+1}, \ldots, v^{s_{1}+s_{2}}\right)$, where $u_{1}, \ldots, u_{r_{1}+r_{2}} \in V$ and $v^{1}, \ldots, v^{s_{1+s_{2}}} \in V^{*}$

Theorem:

The operation \otimes has the following properties :

1) $t_{1} \otimes\left(t_{2}+t_{3}\right)=t_{1} \otimes t_{2}+t_{1} \otimes t_{3} ;$
2) $\left(t_{1}+t_{2}\right) \otimes t_{3}=t_{1} \otimes t_{3}+t_{2} \otimes t_{3}$;
3) $t_{1} \otimes\left(t_{2} \otimes t_{3}\right)=\left(t_{1} \otimes t_{2}\right) \otimes t_{3}$.

The operation \otimes which has the above properties, is called a tensor product .
The K-module $\tau(V) \cong \bigoplus_{r=0}^{\infty} \oplus_{s=0}^{\infty} \tau_{r}^{S}(V)$ with tensor product is called a tensor algebra.

Remark:

From the reflexivity of V ,we have:
$\tau_{0}^{1}(V)=\left\{t: V^{*} \rightarrow K\right\}=V^{* *}=V, \tau_{1}^{0}(V)=\{t: V \rightarrow K\}=V^{*}$.

Definition:

From the above definition we get that the sub modules $\tau_{*}(V)=\bigoplus_{r=0}^{\infty} \tau_{r}^{0}(V)$ and $\tau^{*}(V)=\bigoplus_{s=0}^{\infty} \tau_{0}^{S}(V)$ represente sub algebras of the tensor algebra $\tau(V)$ and thy called covariant and contravariante tensor algebra of V respectively.

Remark:

If V is a finite linear space over a field K and $\left\{e_{1}, \ldots, e_{n}\right\}$ is any basis of V , $\left\{e^{1}, \ldots, e^{n}\right\}$ is a dual basis , then,

$$
e^{i}\left(e_{j}\right)=\delta_{j}^{i}=\left\{\begin{array}{lll}
1 & \text { If } i=j \\
0 & \text { If } i \neq j
\end{array},\right. \text { then }
$$

The tensor of the forms :

$$
e_{i_{1}} \otimes \ldots \otimes e_{i_{r}} \otimes e^{j_{1}} \otimes \ldots \otimes e^{j_{s}}
$$

$i_{1}, \ldots, i_{r}, j_{1}, \ldots, j_{r}=1, \ldots, n$, are basis of linear space $\tau_{r}^{s}(V)$. In particular, we have :

$$
\operatorname{dim} \tau_{r}^{S}(V)=n^{r+s}
$$

Remark:

The coordinates $\left\{t_{i_{1}, \ldots, i_{r}}^{j_{1}, \ldots, j_{s}}\right\}$ of the tensor $t \in \tau_{r}^{S}(V)$ in this basis are equal to it is components.i.e. ,

$$
t_{i_{1}, \ldots, i_{r}}^{j_{1}, \ldots, j_{s}}=t\left(e_{i_{1}}, \ldots, e_{i_{r}}, e^{j_{1}}, \ldots, e^{j_{s}}\right)
$$

Definition:

Let M be n-dimensional smooth manifold, $p \in M$, then, the tensor algebra $\tau\left(T_{P}(M)\right)$ denoted by $\tau_{p}(M)$ and is called a tensor algebra of the manifold M at the point p .In the other hand $\tau(X(M))$ denoted by $\tau(M)$ and is called a tensor algebra of manifold M . The element of the tensor algebra are called a tensor fields .

Definition:

A dual of the module $X(M)$ is called a module of differential 1-form on manifold M , and is denoted by $X^{*}(M)$;

$$
X^{*}(M)=\{t: X(M) \rightarrow \mathbb{R}\}
$$

Theorem:

The giving of tensor $t \in \tau_{r}^{S}(M)$ on smooth manifold M equivalent to the giving family of tensors $\left\{t_{p} \in \tau_{r}^{S}(M) ; p \in M\right\}$ such that, in each local chart (U, φ) with coordinates $\left\{x^{1}, \ldots, x^{n}\right\}$ on M , the functions,

$$
t_{i_{1}, \ldots, i_{r}}^{j_{1}, \ldots, j_{s}}(p)=t\left(\left.\frac{\partial}{\partial x^{i_{1}}}\right|_{p}, \ldots,\left.\frac{\partial}{\partial x^{i_{r}}}\right|_{p}, w_{p}^{j_{1}}, \ldots w_{p}^{j_{s}}\right) .
$$

Where $\left\{w_{p}^{1}, \ldots, w_{p}^{n}\right\}$ is the dual basis of the canonical basis of the $\operatorname{space} T_{p}(M)$ at the point \in M.

7-Grassman algebra of smooth manifold.

Operator of exterior differentiation .

Let $T_{*}(V)=\bigoplus_{r=0}^{\infty} \tau_{r}^{0}(V)$ be the covariant tensor algebra of reflexive K-module V . In the module $\tau_{r}^{0}(V)$ acts symmetric group s_{r} of order r (permetation group) as the following: If module $t \in \tau_{r}^{0}(V), \sigma \in s_{r}$, then $(\sigma t)\left(x_{1}, \ldots, x_{r}\right)=t\left(x_{\sigma(1)}, \ldots, x_{\sigma(r)}\right)$.

Definition:

The tensor $t \in \tau_{r}^{0}(V)$ is called a symmetric, if $\forall \sigma \in s_{r}$, then $\sigma t=t$ and the tensor $t \in$ $\tau_{r}^{0}(V)$ is called antisymmetric if for each $\sigma \in s_{r}$, then $\sigma t=\mathcal{E}(\sigma)$ where $\mathcal{E}(\sigma)$ is the sign of permetation which equal to 1 for even permetation and -1 for odd permetation:

$$
\mathcal{E}(\sigma)=\left\{\begin{array}{l}
1 \text { if o even } \\
-1 \text { if o odd }
\end{array}\right.
$$

Note:

Clearly that the symmetric and antisymmetric tensors are submodules of the module $\tau_{r}^{0}(V)$ and we will denote them by $S_{r}(V)$ and $\wedge_{r}(V)$ respectivly.

Definition:

Define endomorphisims Sym and Alt of $\tau_{r}^{0}(V)$ as follows:

$$
\operatorname{Sym}(t)=\frac{1}{r!} \sum_{\sigma \in s_{r}} \sigma t ; \text { Alt }=\frac{1}{r!} \sum_{\sigma \in s_{r}} \varepsilon(\sigma) t
$$

Which are projections ;on modules $S_{r}(V)$ and $\Lambda_{r}(V)$ respectivly, and are called symmetric and alterative operators .Define an operation as follows:

$$
\wedge: \wedge_{r}(V) \times \wedge_{S}(V) \longrightarrow \wedge_{r+s}(V)
$$

If $w_{1} \in \wedge_{r}(V), w_{2} \in \wedge_{S}(V)$, then $w_{1} \wedge w_{2} \in \wedge_{r+s}(V)$ which is defined by the form:

$$
w_{1} \wedge w_{2}=\frac{(r+s)!}{r!s!} \operatorname{Alt}\left(w_{1} \otimes w_{2}\right)
$$

Proposition:

Prove that :

1) $\left(w_{1}+w_{2}\right) \wedge w_{3}=w_{1} \wedge w_{3}+w_{2} \wedge w_{3}$;
2) $w_{1} \wedge\left(w_{2}+w_{3}\right)=w_{1} \wedge w_{2}+w_{1} \wedge w_{3}$;
3) $w_{1} \wedge\left(w_{2} \wedge w_{3}\right)=\left(w_{1} \wedge w_{2}\right) \wedge w_{3}$.

Definition:

The operator \wedge is called an exterior product .
Let $\wedge(V)=\oplus_{r=0}^{\infty} \wedge_{r}(V)$, where $\wedge_{0}(V)=K$, and $\wedge_{1}(V)=V^{*}$.
$\Lambda(V)$ with operation \wedge is called an exterior algebra.

Remark:

If $\wedge_{r}(V)$, then, $w: \underbrace{V \times \ldots \times V \rightarrow K}_{r \text {-times }}$, which is called a form of degree r or r-form.

Definition:

Let V be an n -dimensional linear space over a field $\mathrm{K},\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of V , then the r-forms:
$e_{i_{1}} \wedge \ldots \wedge e_{i_{r}}$ are basis of the module $\wedge_{r}(V)$. The coordinates $\left\{w_{i_{1}, \ldots, i_{r}}\right\}$ of r-form $w \in \wedge_{r}(V)$, in this basis, considens with it is components, i.e.

$$
w_{i_{1}, \ldots, i_{r}}=w\left(e_{i_{1}}, \ldots, e_{i_{r}}\right)
$$

Clearly that $\operatorname{dim} \wedge_{r}(V)=\binom{n}{r}=\frac{n!}{r!(n-r)!}$.

Definition:

Suppose that M is smooth manifold . Exterior algebra $\wedge(X(M))$ denoted by $\wedge(M)$ which is called a Grassman algebra of smooth manifold M.It is elements are called differential form .

Theorem:

Suppose that M is a smooth manifold, then there exist a unique mapping:

$$
d: \wedge(M) \longrightarrow \wedge(M)
$$

With the following properties:

1) $d\left(\wedge_{r}(M) \subset \wedge_{r+1}(M)\right.$;
2) $d f(X)=X(f)$;
3) $d \circ d=0$;
4) $d\left(w_{1} \wedge w_{2}\right)=d w_{1} \wedge w_{2}+(-1)^{r} w_{1} \wedge d w_{2}$,

Where $w_{1} \in \wedge_{r}(M), w_{2} \in \wedge(M)$.

Definition:

The operator d which has the above properties is called the operator exterior differentiation .

Proposition:

Suppose that M is a smooth manifold, (U, φ) is a local chart with coordinates $\left\{x_{1}, \ldots, x_{n}\right\}$ on M and $\left\{\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{n}}\right\}$ is the canonical basis for the module $X(U)$,then the differential 1-forms $\left\{d x_{1}, \ldots, d x_{n}\right\}$ is the dual basis of the canonical basis of $X(U)$

8-Smooth map,differential of smooth map.

Proposition:

Suppose that M and N are smooth manifolds, a map $\phi: M \longrightarrow N$ is called a smooth, $\operatorname{if} \forall f \in C^{\infty}(N)$, then $f \circ \phi \in C^{\infty}(M)$.

Remark:

The above definition equivalent to the following:
A map $\phi: M \rightarrow N$ is called a smooth, if for each chart (U, φ) on M and (V, ψ) on N with coordinates $\left\{x_{1}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, \ldots, y_{n}\right\}$ respectivly, then, the map :

$$
\psi о \phi о \varphi^{-1}: \varphi(U) \longrightarrow \psi(V)
$$

Is a smooth of Eucledian space.

Note:

If the smooth map ϕ is the bijective such that the map ϕ^{-1} is smooth, then the map ϕ is called a diffeomorphisim.

Definition:

Let $p \in M$, define a map:

$$
\left(\phi_{*}\right)_{p}: T_{p}(M) \longrightarrow T_{\phi(p)}(N) \text { as follows: }
$$

Let $\in T_{p}(M),\left(\phi_{*}\right)_{p}(\xi)(f)=\xi(f o \phi) ; f \in C^{\infty}(N)$. The map $\left(\phi_{*}\right)_{p}$ is called a differential map of the smooth map ϕ.Note that $\left(\phi_{*}\right)_{p}(\xi) \in T_{\phi(p)}(N)$.

9- ϕ - connection of vector fields.

Definition:

Let $\phi: M \rightarrow N$ be a smooth map, the vector fields $X \in X(M), Y \in X(N)$ is called $\phi-$ connection , if $\forall f \in C^{\infty}(N)$, then $X(f o \phi)=Y(f) o \phi$.

Theorem:

The vector field X and Y are ϕ - connection iff $\forall p \in M$, then $\left(\phi_{*}\right)_{p} X_{p}=Y_{\emptyset(P)}$.

Remark:

We will dente by $Y=\phi_{*} X$.

Definition:

The vector field $Y=\phi_{*} X$ is called a dragging of the vector field X with respect to the map .

H.W.:

If $Y_{1}=\phi_{*} X_{1}$ and $Y_{2}=\phi_{*} X_{2}$, then, Prove that: $\left[Y_{1}, Y_{2}\right]=\phi_{*}\left[X_{1}, X_{2}\right]$.

Remark:

By the same way for the vector field $\in X(M)$, we can define the dragging $\phi_{*} X$, where $\phi_{*}: X(M) \rightarrow X(N)$, then $\phi_{*}^{-1}=\phi^{*}: X(N) \rightarrow X(M)$ which is called an anti-dragging of the vector field.

10-Distribution and co distribution .

Definition:

A sub module D of the module $X(M)$ is called a distribution on M . The distribution D is called r -dimensional , if there exist atlas on M such that each chart (U, φ), then,

$$
D \mid U=\{X \mid D: X \in D\}
$$

Is a module of r-dimension .

Remark:

The giving of r-dimensional distribution on M is equivalent to the giving the family $\left\{D_{P} \subset\right.$

$$
\left.T_{P}(M): \operatorname{dim} D_{p}=r\right\} .
$$

Definition:

A sub module C of the module $X^{*}(M)$ is called a codistribution .

Definition:

Suppose that D is the distribution on M .The sub module :

$$
C_{D}=\left\{w \in \wedge_{1}(M): w(X)=0, \forall X \in D\right\} .
$$

Is called a codistribution associated with the distribution .

Theorem:

If M is an n -dimensional smooth manifold, and $\operatorname{dimD}=r$, then, $\operatorname{dim} C_{D}=n-r$.

Proof:

Suppose that $\left\{X_{1}, \ldots, X_{r}\right\}$ is a local basis for the distribution D. Compelet this basis to the basis $\left\{X_{1}, \ldots, X_{n}\right\}$ for the module $X(M)$. Let $\left\{w^{1}, \ldots, w^{n}\right\}$ be a dual basis . Let $w \in$ $X^{*}(M)$, then,
$w=\sum_{i=1}^{n} a_{i} w^{i}$, where $a_{i}=w\left(X_{i}\right)$. We have :
$w \in C_{D}$ iff $w(X)=0, \forall X \in D$ iff $a_{k}=w\left(X_{k}\right)=0, k=1, \ldots, r$.
Then we get $=a_{r+1} w^{r+1}+\cdots+a_{n} w^{n}$, since the form $\left\{w^{r+1}, \ldots, w^{n}\right\}$ are linearly independent, then are will be basis of the module C_{D}.

Therefore, $\operatorname{dim} C_{D}=n-r$.

11-Sub manifold of smooth manifold.

Definition:

Suppose that $\phi: N \rightarrow M$ is a smooth function, the rank of ϕ at $p \in N$ is the rank of the $\left(\phi_{*}\right)_{p}: T_{p}(N) \rightarrow T_{\phi(p)}(M)$. The dimension of range $\left(\phi_{*}\right)_{p}$ is called the rank of $\left(\phi_{*}\right)_{p}$.

Definition:

A smooth map $\phi: N \rightarrow M$ is called an immersion if it is rank equal to the dimension of N.

Definition:

Suppose that $\phi: N \rightarrow M$ is a smooth map, if ϕ is an immersion, then we say that the pair (N, ϕ) is an immbeding sub manifold. In this case, if ϕ is an injective, then the pair (N, ϕ) Is called a sub manifold of M .

If (N, ϕ) is a sub manifold of M ,such that the map ϕ is an open, then we say that (N, ϕ) is an inclusion sub manifold of M and ϕ is called an inclusion map .

Example:

Let $N=I \subset \mathbb{R}, \alpha_{i}: I \rightarrow M$ is a smooth curve ; $\mathrm{i}=1,2,3$, which are defined as following diagrams:

1) (I, α_{1}) is immbeding sub manifold, but not sub manifold ;
2) (I, α_{2}) is sub manifold, but not inclusion sub manifold ;
3) $\left(I, \alpha_{3}\right)$ is inclusion sub manifold .

PART(2):

Lie group and Lie algebra .

1-Lie group:

Definition:

A Lie group is a group G which is al so smooth manifold such that, the map:

$$
\phi: G \times G \rightarrow G
$$

Which is defined by:

$$
\phi(x, y)=x \cdot y^{-1}
$$

Is a smooth $\forall x, y \in G$.

Proposition:

Suppose that G is a Lie group, then an operation $\alpha: G \longrightarrow G$ and $\alpha(x)=x^{-1}$ is a smooth .

Proof:

The map $\alpha: G \longrightarrow G$ can be written as the form:

$$
x: \stackrel{i_{e}}{\rightrightarrows}(e, x) \xrightarrow{\varphi} e \cdot x^{-1}=x^{-1}
$$

Where e is the identity element of G. The map $\alpha=\varphi o i_{e}$ is a smooth, since i_{e} and φ are smooth .

Proposition:

The map $\mu: G \times G \longrightarrow G$, where $\mu(x, y)=x . y$ is a smooth.

Proof:(H.W).

Examples:

1) The space $\mathbb{R}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x \in \mathbb{R}\right\}$ is a Lie group with respect to the operation

Solution:

$\operatorname{Let} x=\left(x_{i}\right), y=\left(y_{i}\right) \in \mathbb{R}^{n}$.
$\left(x_{i}\right) \cdot\left(y_{i}\right)=x_{i}+y_{i}$, and $\left(x_{i}\right)^{-1}=-x_{i}$, then $(x, y)=x \cdot y^{-1}=x_{i}-y_{i}$.
Therefore, the map φ gives a smooth maps $u_{i}=x_{i}-y_{i}, i=1, \ldots, n$.
Hence, φ is a smooth map which means that \mathbb{R}^{n} is a Lie group .
2) $\mathbb{C}^{*}=\{z \in \mathbb{C} ; z \neq 0\}$, is a Lie group with respect to the complex product operation.

Solution:

Let $z_{1}=x_{1}+i y_{1}, z_{2}=x_{2}+i y_{2} ; z=x+i y \in \mathbb{C}$, then,

$$
\begin{aligned}
z_{1} \cdot z_{2} & =\left(x_{1} x_{2}-y_{1} y_{2}\right)+i\left(x_{1} y_{2}+x_{2} y_{1}\right), z^{-1}=\frac{x-i y}{x^{2}+y^{2}} \\
\varphi\left(z_{1}, z_{2}\right) & =x_{1}+i y_{1} \frac{x_{2}-i y_{2}}{x_{2}^{2}-y_{2}^{2}}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}+i \frac{-x_{1} y_{2}+y_{1} x_{2}}{x_{2}^{2}+y_{2}^{2}}
\end{aligned}
$$

The map φ gives a smooth functions,

$$
u_{1}=\frac{x_{1} x_{2}+y_{1} y_{2}}{x_{2}^{2}+y_{2}^{2}}, u_{2}=\frac{-x_{1} y_{2}+y_{1} x_{2}}{x_{2}^{2}+y_{2}^{2}} .
$$

3) Let G_{1} and G_{2} be a Lie groups, then the smooth manifold:

$$
G_{1} \times G_{2}=\left\{\left(g_{1}, g_{2}\right): g_{1} \in G_{1} \wedge g_{2} \in G_{2}\right\}
$$

Is a Lie group with respect to components of groups operation:

$$
\begin{gathered}
\left(g_{1}, g_{2}\right) \cdot\left(h_{1}, h_{2}\right)=\left(g_{1} h_{1}, g_{2} h_{2}\right) ; \\
\left(g_{1}, g_{2}\right)^{-1}=\left(g_{1}^{-1}, g_{2}^{-1}\right) .
\end{gathered}
$$

Karatan's theorem :

Suppose that G is a Lie group, $A \subset G$ is a closed sub group of , then A is a Lie group .
4) Let $S^{1}=\left\{z \in \mathbb{C}^{*}:|z|=1\right\},\left(S^{1} \subset \mathbb{C}^{*}\right)$

Solution:

If $z_{1}, z_{2} \in S^{1} \Rightarrow\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|=(1)(1)=1$, thus $z_{1} \cdot z_{2} \in S^{1}$.
If $z \in S^{1} \Rightarrow\left|z^{-1}\right|=\frac{1}{|z|}=\frac{1}{1}=1$, thus $z^{-1} \in S^{1}$,
Therefore, S^{1} is a sub group of \mathbb{C}^{*}.
Let $\left\{z_{n}\right\}$ be a sequence in S^{1} and $\lim _{n \rightarrow \infty} z_{n}=z$,
So $|z|=\left|\lim _{n \rightarrow \infty} z_{n}\right|=\lim _{n \rightarrow \infty}\left|z_{n}\right|=\lim _{n \rightarrow \infty} 1=1$.
Thus, $z \in S^{1}$, therefore S^{1} is closed.
Hence, by Karatan's theorem, we get that S^{1} is a Lie group .
5) General linear group .
$\mathrm{GL}(\mathrm{n}, \mathbb{R})=\left\{A=\left(a_{i j}\right) \in M_{n, n}: \operatorname{det} A \neq 0\right\}$.

Solution:

Clearly that $G L(n, \mathbb{R})$ is open sub set in $M_{n, n} \cong\left(\mathbb{R}^{n}\right)^{2}$, then, $G L(n, \mathbb{R})$ is a smooth manifold and group .

$$
\begin{gathered}
\varphi: G L(n, \mathbb{R}) \times G L(n, \mathbb{R}) \rightarrow G L(n, \mathbb{R}) \\
\varphi(A, B)=A \cdot B^{-1}=C=\left(c_{i j}\right) \\
c_{i j}=\sum_{k=1}^{n} a_{i k}\left(B_{k j}\right)^{-1}=\sum_{k=1}^{n} a_{i k} \frac{(-1)^{k+j} \Delta_{j k}}{\operatorname{det} B}=\sum_{k=1}^{n} \frac{(-1)^{k+j} a_{i k} \Delta_{j k}}{\operatorname{det} B}
\end{gathered}
$$

Where $\Delta_{j k}$ is the complement of $B_{k j}$,
Clearly that $c_{i j}$ are smooth functions, therefore, φ is a smooth .
Hence, $G L(n, \mathbb{R})$ is a Lie group.
6) Orthogonal group of order n.
$\left.G L(n, \mathbb{R}): A^{-1}=A^{T}\right\} O(n, \mathbb{R})=\{A \in$
Then, by Karatan's theorem, $O(n, \mathbb{R})$ is a Lie group .
7) Unimodule group $S L(n, \mathbb{R})=\{A \in G L(n, \mathbb{R}): \operatorname{det} A=1\}$;
8) Spicial orthogonal group $\operatorname{SoL}(n, \mathbb{R})=O(n, \mathbb{R}) \cap \operatorname{SL}(n, \mathbb{R})$;
9) Complex general linear group $G L(n, \mathbb{C})=\left\{C=\left(c_{i j}\right): c_{i j} \in \mathbb{C} ; \operatorname{det} C \neq 0\right\}$;
10) Complex orthogonal group $(n, \mathbb{C})=\left\{C \in G L(n, \mathbb{C}): C^{-1}=C^{T}\right\}$;
11) Complex unimodule group $\operatorname{SL}(n, \mathbb{C})=\{C \in G L(n, \mathbb{C}): \operatorname{det} C=1\}$;
12) Complex orthogonal unimodule group $\operatorname{SoL}(n, \mathbb{C})=O(n, \mathbb{C}) \cap S L(n, \mathbb{C})$;
13) Unitary group $(n)=\left\{C \in G L(n, \mathbb{C}): C^{-1}=C^{-T}\right\}$.

Realization of general complex group.

$\mathrm{GL}(\mathrm{n}, \mathbb{C})^{\mathbb{R}}=\left\{A \in M_{2 n, 2 n}: A \circ J=J \circ A\right\}$.
Where $J=\left(\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right)$, it is easy to check that $J^{2}=-I_{2 n}$,

$$
J^{2}=J \cdot J=\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right) \cdot\left(\begin{array}{cc}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right)=\left(\begin{array}{cc}
-I_{2 n} & 0 \\
0 & -I_{2 n}
\end{array}\right) .
$$

Let $\in \operatorname{GL}(\mathrm{n}, \mathbb{C})^{\mathbb{R}} ; A=\left(\begin{array}{cc}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right)$, then,
$A \circ J=J \circ A \Rightarrow\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right) \circ\left(\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right)=\left(\begin{array}{cc}0 & -I_{n} \\ I_{n} & 0\end{array}\right) \circ\left(\begin{array}{ll}A_{1} & A_{2} \\ A_{3} & A_{4}\end{array}\right) \Rightarrow A_{2}=-A_{3}, A_{1}=$ A_{4}. Therefore, we get $=\left(\begin{array}{cc}A_{1} & A_{2} \\ -A_{2} & A_{1}\end{array}\right)$.

If $C=A+\sqrt{-1} B$ then, $=\left(\begin{array}{cc}A & -B \\ B & A\end{array}\right)$.
$\mathrm{GL}(\mathrm{n}, \mathbb{C})^{\mathbb{R}} \subset G L(2 n, \mathbb{R})$,closed sub group, and then by Karatan's theorem it will be Lie group.

Proposition:

$G L(n, \mathbb{C}) \cong G L(n, \mathbb{C})^{\mathbb{R}}$.

Solution:

Define $\varphi: G L(n, \mathbb{C}) \rightarrow \operatorname{GL}(\mathrm{n}, \mathbb{C})^{\mathbb{R}}$ as :
If $=\left(c_{i j}\right) \in G L(n, \mathbb{C})$, where $\left(c_{i j}\right)=\alpha_{i j}+\sqrt{-1} \beta_{i j}$,
Consider matrices $A=\left(\alpha_{I J}\right)$ and $B=\left(\beta_{i j}\right) \in \mathrm{GL}(\mathrm{n}, \mathbb{C})^{\mathbb{R}}$,
And $C=(A+\sqrt{-1} B) \in G L(n, \mathbb{C})$, then $\left.\varphi(A+\sqrt{-1} B)=\left(\begin{array}{cc}A & -B \\ B & A\end{array}\right)\right) \in \operatorname{GL}(\mathrm{n}, \mathbb{C})^{\mathbb{R}}$.
Prove that φ is an isomorphisim .

Semi - direct product of Lie grops.

Let $\quad G=G L(n, \mathbb{R})$ and $H=\mathbb{R}^{\mathrm{n}}$ are be Lie groups .we know that $M=G \times H$ has Lie group structure, this Lie group is the direct product of Lie groups. But there is another Lie group structure :

Let $(A, X),(B, Y) \in G L(n, \mathbb{R}) \times \mathbb{R}^{\mathrm{n}}$, define the operation $*$ by:
$(A, X) *(B, Y)=(A B, A Y+X)$ and $(A, X)^{-1}=\left(A^{-1},-A^{-1} X\right)$.
Directly, from this operation we can prove that $M=G \times H$ is a group (check).
Define $\varphi: M \times M \rightarrow M$ by:
$\varphi((A, X),(B, Y))=(A, X) *(B, Y)^{-1}=(A, X) *\left(B^{-1},-B^{-1} Y\right)=\left(A B^{-1},,-A B^{-1} Y+X\right)$.
Then we get that φ is a smooth map .Threfore, $G L(n, \mathbb{R}) \rtimes \mathbb{R}^{\mathrm{n}}$ is a Lie group, and is called a semi- direct product of Lie groups $G L(n, \mathbb{R})$ and \mathbb{R}^{n}.

2-Lie algebra.

Definition:

A space \mathcal{G} over a field \mathbb{F} is called a Lie algebra if the binary operation , [.,.]: $\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$ Satisfies the following properties :

1) $[X, Y]=-[Y, X]$;
2) $[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0$.

Note:

We will assume that $=\mathbb{R}$.

Examples:

1) suppose that M is a smooth manifold, then the module $X(M)$ is a Lie algebra under operation :

$$
[X, Y]=X o Y-Y o X ; X, Y \in X(M) .
$$

2) Every arthemetic linear space V is a Lie algebra with $[X, Y]=0, X, Y \in V$.
3) Every associative algebra A is a Lie algebra with respect to the operation :

$$
[X, Y]=X . Y-Y . X ; X, Y \in A .
$$

In particular, the general matrix algebra $[A, B] A . B-B . A ; A, B \in M_{n, n}$
Where . is the product matrix operation .

3- Lie algebra of Lie group .

Definition:

Let G be a Lie group, $g \in G$, define maps :
$L_{g}: G \rightarrow G$ and $R_{g}: G \rightarrow G$ by $L_{g}(h)=g . h, R_{g}(h)=h . g$
L_{g} is called a left shift to element g.
R_{g} is called a right shift to element g.

The maps R_{g} and L_{g} are a smooth maps have the following properties :

1) $L_{g} o L_{h}=L_{g h}: G \longrightarrow G ; g, h \in G$.

$$
\left(L_{g} o L_{h}\right)(p)=L_{g}\left(L_{h}(p)\right)=L_{g}(h p)=g(h p)=(g h) p=L_{g h}(p)
$$

Therefore,$L_{g} o L_{h}=L_{g h}$.
2) $R_{g} o R_{h}=R_{h g}$, (H.W).
3) The maps L_{g} and R_{g} are diffeomorphisim. This can be get directly from,
$\forall g \in G,\left(L_{g}\right)^{-1}=L_{g^{-1}}$ and $\left(R_{g}\right)^{-1}=R_{g^{-1}}$,
Then, $L_{g} o\left(L_{g}\right)^{-1}=L_{g} o L_{g^{-1}}=L_{g o g^{-1}}=L_{e}$, where e is the identity element of G, i.e $L_{e}(g)=e . g=g$.

By the same way, we have:

$$
\left(L_{g}\right)^{-1} o L_{g}=L_{g^{-1}} o L_{g}=L_{g^{-1} g}=L_{e}
$$

Therefore, we get that L_{g} is isomorphisim, and since $L_{g}, L_{g^{-1}}$ are differentiables (smooth), then we get that L_{g} is diffeomorphisim .

Definition:

A vector field $X \in X(G)$ is called a left invariant , if $\forall g \in G$, then $\left(L_{g}\right)_{*} X=X$, where $\left(L_{g}\right)_{*}: X(G) \longrightarrow X(G)$ is the differential map of the smooth map $L_{g}: G \longrightarrow G$.

Theorem:

A set \mathcal{G} of all left invariant vector fields on Lie group G is a linear space which is isomorphic to the tangent space $T_{e}(G)$ of Lie group G at the identity.

Inparticular, $\operatorname{im} \mathcal{G}=\operatorname{dim} G$.

Definition:

The Lie algebra $\mathcal{G}(G)$ of all left invariant vector fields of Lie group G is called a Lie algebra of Lie group.

Proposition:

The linear space \mathcal{G} of all left invariant vector fields of Lie group G is a Lie algebra with respect to the commutator operation of vector fields.

Proof: (H.W) .

4-Homomorphisim of Lie groups and Lie algebras.

Definition:

A map $\varphi: G \rightarrow H$ of Lie groups is called a homomorphisim of Lie groups if:

1) φ is smooth ;
2) $\varphi(x, y)=\varphi(x) \varphi(y), x, y \in G$.

Definition:

A ma $\phi: \mathcal{G} \rightarrow h$ of Lie algebras is called a homomorhpisim of algebras if:

1) ϕ is a linear map ;
2) $\phi[X, Y]=[\phi X, \phi Y] ; X, Y \in \mathcal{G}$.

5-The action of Lie group on a smooth manifold.

Definition:

Let G be a Lie group and M be a smooth manifold, we say that G act differentially on M of the left, if there exist a smooth map $\varphi: G \times M \rightarrow M$ which satisfies the following conditions:

1) $\forall g \in G$, the map $\varphi_{g}: M \rightarrow M$ which defined by $\varphi_{g}(m)=\varphi(g, m)=g m$ is diffeomorphisim.
2) $\varphi_{g h}(m)=\varphi_{g} o \varphi_{h}(m)=\varphi_{g}\left(\varphi_{h}(m)\right)=g(h m) . \forall g, h \in G, m \in M$.

Note that $\varphi_{e}(m)=e m=m$ where e is the identity element of G.

Definition:

We say that G acts effectively if satisfies: If $\varphi_{g}(m)=m, \forall m \in M$ then $g=e$.
And we say that G acts freely, if $\varphi_{g}(m)=m$ for some $m \in M$, then $g=e$.

Definition:

The Lie group G act on M of the right, if there exist a smooth map $\varphi: M \times G \rightarrow M$ which satisfies the following conditions :

1) $\forall g \in G$, the map $\varphi_{g}: M \rightarrow M$ which defined by $\varphi_{g}(m)=\varphi(m, g)=m g$ is diffeomorphisim.
2) $\varphi_{g h}(m)=\varphi_{h} o \varphi_{g}(m)=\varphi_{h}\left(\varphi_{g}(m)\right)=\varphi_{h}(m g)=(m g) h, \forall g, h \in G, m \in M$.

Example:

Suppose that V is n -dimensional linear space, denoted by β to the set of all basis of V . The Lie group $G L(n, \mathbb{R})$ acts on β of the right as the follows:

Let $=\left(e_{1}, \ldots, e_{n}\right) \in \beta, g=\left(g_{j}^{i}\right) \in G L(n, \mathbb{R})$.
Put $\varphi_{g}(b)=\left(g_{1}^{i_{1}} e_{i_{1}}, \ldots, g_{n}^{i_{n}} e_{i_{n}}\right)$.
We know that $\varepsilon_{i}=g_{i}^{j} e_{j},(i=1, \ldots, n)$,
Where $\left(g_{i}^{j}\right)$ is the transition matrix from the basis $\left\{e_{1}, \ldots, e_{n}\right\}$ to the basis $\left\{\varepsilon_{1}, \ldots, \varepsilon_{n}\right\}$

$$
\varphi_{g}(b) \in \beta
$$

Clearly that φ_{g} is bijective and the diffeomorphisim.
Let , $h \in G L(n, \mathbb{R})$, then,

$$
\begin{gathered}
\varphi_{h} o \varphi_{g}(b)=\varphi_{h} o \varphi_{g}\left(e_{1}, \ldots, e_{n}\right) \\
=\varphi_{h}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\left(h_{1}^{i_{1}} \varepsilon_{i_{1}}, \ldots, h_{n}^{i_{n}} \varepsilon_{i_{n}}\right) \\
=\left(h_{1}^{i_{1}} g_{i_{1}}^{j_{1}} e_{j_{1}}, \ldots, h_{n}^{i_{n}} g_{i_{n}}^{j_{n}} e_{j_{n}}\right) \\
=\left((g h)_{1}^{j_{1}} e_{j_{1}}, \ldots,(g h)_{n}^{j_{n}} e_{j_{n}}\right) \\
=\varphi_{g h}(b)
\end{gathered}
$$

Therefore, $\varphi_{g h}=\varphi_{h} O \varphi_{g}$.
Then the Lie group $G L(n, \mathbb{R})$ acts on β on the right .

PART(3)

Princible fiber bundle space .

1- Princible fiber bundle.

Definition:

Suppose that the Lie group G acts on smooth manifold M then for each $m \in M$ generates a map $\delta_{m}: G \rightarrow M$, such that, for each $g \in G, \delta_{m}(g)=\varphi_{g}(m)$.

The image of δ_{m} called an orbit of the point $m \in M$. The set of all orbit will be denoted by $\operatorname{Orb}_{G} M$ which is a smooth manifold.

Definition:

A princible fiber bundle is a set of four (P, M, Π, G), where P is a smooth manifold, and G is a Lie group which is acts freely on P of the right, $M=\operatorname{Orb}_{G} P$ is the space of the orbits.
$\Pi: P \rightarrow M$, is a projection (which is smooth), such that the following are satisfies:
There is an open cover U of M, such that,

$$
\forall u \in U, \exists F_{u}: \Pi^{-1}(U) \rightarrow G
$$

Where (F_{u} is a smooth map) satisfies the conditions:

1) $F_{u}(p g)=F_{u}(p) g ;(p \in P, g \in G)$;
2) The map $\psi_{u}: F_{u}: \Pi^{-1}(U) \rightarrow U \times G$ satisfies:
$\psi_{u}(p)=\left(\Pi(p), F_{u}(p)\right)$ is diffeomorphisim.
P : is called a fiber space (total space);
G : is called a structure group;
M : is called a basis of fiber bundle;
Π : is called a canonical projection;
$\forall m \in M, \Pi^{-1}(\mathrm{~m})$ is called a fiber over m.

Example:

Consider $\left(P, M, \Pi_{1}, G\right)$, where M and G smooth manifold and Lie group respectivly. $P=M \times G ; \Pi_{1}: M \times G \rightarrow M$ is the projection on the first factor $\left(\Pi_{1}(m, g)=m\right)$. The Lie group G acts on P of the right as follows:

$$
\varphi_{h}(m, g)=(m, g) h=(m, g h) .
$$

This action is freely because if $\varphi_{h}(m, g)=(m, g)$, so $(m, g h)=(m, g)$, then, $g h=g$ and thus $h=e$.

Now: suppose that the open cover \boldsymbol{U} consist of element $U=M$.

1) $F_{U}(p)=F_{U}(m, g)=g=\Pi_{2}(\mathrm{p}) \Rightarrow F_{U}=\Pi_{2}$;

$$
F_{U}(p g)=F_{U}((m, h) g)=F_{U}(m, h g)=\Pi_{2}(m, h g)=h g=\Pi_{2}(p) g=F_{U}(p) g ;
$$

2) ψ_{U} is diffeomorphisim .

Definition:

Suppose that $\beta_{1}\left(P_{1}, M, \Pi_{1}, G_{1}\right)$ and $\beta_{2}\left(P_{2}, M, \Pi_{2}, G_{2}\right)$ are two fiber bundle spaces, a homomorphisim fiber bundle from β_{1} to β_{2} is a pair (f, ρ), where $f: P_{1} \rightarrow P_{2}$ is a smooth map and $\rho: G_{1} \rightarrow G_{2}$ is a homomorphisim of Lie groups such that:

1) The following diagram is commutative,

2) $\forall p \in P_{1}$ and $\forall g \in G_{1}$, then $f(p g)=f(p) \rho(g)$.

In particular, if $\left(P_{1}, f\right)$ is a sub manifold of P_{2}, and $\left(G_{1}, \rho\right)$ is a Lie sub group of G_{2}, then, β_{1} is called a sub fiber bundle of β_{2}.

Note:

Another important case, if f is a diffeomorphisim, and ρ is an isomorphisim of Lie groups, then the pair (f, ρ) is called an isomorphisim of principle fiber bundles, or we say that β_{1} and β_{2} are equivalent principle fiber bundles .

Structure equation of principle fiber bundle .

a-Introduction:-

Definition:

A smooth map $\phi: M \rightarrow N$ is called submersion if its rank equal to the dimension of N.

Theorem*:

Suppose that $\beta=(P, M, \Pi, G)$, is a principle fiber bundle, then the map $\Pi: P \rightarrow M$

Definition:

Suppose that $\beta=(P, M, \Pi, G)$, is a principle fiber bundle, denote by $X_{\Pi}(P)$ to the space of vector field of P, such that if its Π-connection with the vector fields on M, i.e.

$$
X_{\Pi}(P)=\left\{X \in X(P): \exists Y \in X(M): \Pi_{*} X=Y\right\}
$$

Denote by $\tilde{\mathcal{V}}=\operatorname{ker} \Pi_{*}$, then on P appear distribution $\mathcal{V}=C^{\infty}(P) \otimes \tilde{\mathcal{V}}$, i.e.

$$
\mathcal{V}=\left\{\sum f_{i} X_{i}: f_{i} \in C^{\infty}(P), X_{i} \in \tilde{\mathcal{V}}\right\}
$$

The distribution \mathcal{V} is called a vertical distribution on .
Note: According to theorem ${ }^{*}$, we have, if $p \in P$ any point, then, $\operatorname{dim} \mathcal{V}_{p}=\operatorname{dim} \tilde{\mathcal{V}}_{p}=\operatorname{dim} \operatorname{ker}\left(\Pi_{*}\right)_{p}=\operatorname{dim} T_{p}(P)-\operatorname{rank}\left(\Pi_{*}\right)_{p}=\operatorname{dim} P-\operatorname{dimM}$.

Fundamental Lie algebra.

Definition:

Suppose that a Lie group G acts on P (of the right), then defined a map :

$$
\lambda: \mathcal{G} \rightarrow X(P)
$$

(since, if G acts on P, then $\delta_{p}: G \rightarrow P$ is an orbit which is a smooth map).
The map λ generate vector field $X^{\prime}=\lambda(X) \in X(P), \lambda$ is called a homomorphisim of Lie algebras, i.e :

$$
\lambda([X, Y])=[\lambda X, \lambda Y]
$$

The image of λ is a Lie sub algebra $f \subset X(P)$, its elements are called fundamental vector fields on P. The Lie algebra f is called a fundamental Lie algebra of vector fields on .

Remark:

The Lie algebra f generates sub module $\mathcal{F}=C^{\infty}(P) \otimes f$ of the module $X(P)$, i.e:

$$
\mathcal{F}=\left\{\sum f_{i} X_{i}: f_{i} \in C^{\infty}(P), X_{i} \in \mathfrak{f}\right\} .
$$

Proposition:

The map $\lambda: \mathcal{G} \rightarrow f$ is an isomorphisim .

Theorem:

The distribution \mathcal{V} and \mathcal{F} on the P are concides and $\operatorname{dim} G=\operatorname{dim} P-\operatorname{dim} M=\operatorname{dim} \mathcal{V}$

b-the structure equation:

Suppose that $\beta=(P, M, \Pi, G)$ is a principle fiber bundle, \mathcal{V} its vertical distribution, and the indises:

$$
\begin{gathered}
i, j, k, \ldots=r+1, \ldots, r+n \\
a, b, c=1, \ldots, n ; n=\operatorname{dimM} \\
\alpha, \beta, \gamma=1, \ldots, r+n ; r+n=\operatorname{dim} P .
\end{gathered}
$$

Suppose that $\left\{E_{1}, \ldots, E_{r}\right\}$ is a basis of the algebra . since, $\lambda: \mathcal{G} \rightarrow f$ is isomorphisim, then the vector fields $\left\{E_{1}^{\prime}, \ldots, E_{r}^{\prime}\right\}$ is a basis of the linear space \mathfrak{f}, then, a basis of distribution $\mathcal{F}=$ ν.

Lemma 1 :

Suppose that D is r-dimensional distribution on a smooth manifold M, then for each basis for the D, we can complete this basis to the basis for the module $X(M)$.

Lemma 2 :

Suppose that $\left\{E_{1}, \ldots, E_{n}\right\}$ is a basis of the algebra \mathcal{G}, then, $\left[E_{i}, E_{j}\right]=C_{j k}^{i} E_{k}$, where $C_{j k}^{i}$ are called the constant structure of Lie algebra.

Lemma 3 :

Suppose that $\left\{\omega^{i}\right\}$ is a basis of a codistribution, then,

$$
d \omega^{i}=\omega_{j}^{i} \wedge \omega^{j} ; \omega_{j}^{i} \in \wedge_{1}(P)
$$

Theorem:

The structure equation of principle fiber bundle $\beta=(P, M, \Pi, G)$ are :

1) $d \omega^{i}=\omega_{j}^{i} \wedge \omega^{j}$;
2) $d \omega^{a}=-\frac{1}{2} C_{b c}^{a} \omega^{b} \wedge \omega^{c}+\omega_{j}^{a} \wedge \omega^{j}$.

Connection on principle fiber bundle.

Definition:

A projection from the module $X(P)$ on the sub module \mathcal{V} is called a vertical projection.

Definition:

We say that the endomorphisim f of the module $X(P)$ is invariant with respect to the action of the Lie group G if for each $g \in G$, then, $\left(\varphi_{g}\right)_{*} o f=f o\left(\varphi_{g}\right)_{*} ;\left\{\varphi_{g}: P \longrightarrow P\right\}$.

Since G acts on P of the right, then, φ_{g} can be written as R_{g}, and then we have,

$$
\left(R_{g}\right)_{*} o f=f o\left(R_{g}\right)_{*} ; R_{g}(p)=\varphi_{g}(p)=p g
$$

Definition:

A vertical projection which is invariant with respect to the structure group is called a connection on principle fiber bundle, this means, $\Pi_{V} \in \operatorname{End}(X(P))$ is a connection if,

1) $\Pi_{V}{ }^{2}=\Pi_{V}$;
2) $\operatorname{Im} \Pi_{V}=\mathcal{V}$;
3) $\forall g \in G$, we have $\left(R_{g}\right)_{*} o \Pi_{V}=\Pi_{V} o\left(R_{g}\right)_{*}$.

Definition:

Suppose that Π_{V} is a vertical projection in , then, $\Pi_{H}=i d-\Pi_{V}$ is the complement projection.

A distribution $\mathcal{H}=\operatorname{ker} \Pi_{V}=\operatorname{Im} \Pi_{H}$ is called a horizontal distribution, and the projection Π_{H} is called a horizontal projection.

Proposition: (H.W)

Suppose that Π_{V} is connection (i.e. Π_{V} is invariant w.r.t. action of the structure group G), then, Π_{H} also is invariant w.r.t. action of the structure group G.

Theorem:

The giving of the connection on a principle fiber bundle $\beta=(P, M, \Pi, G)$ is equivalent to the setting of distribution $\mathcal{H} \subset X(P)$, such that:

1) $X(P)=\mathcal{V} \oplus \mathcal{H}$;
2) $\left(R_{g}\right)_{*} o \Pi_{H}=\Pi_{H} o\left(R_{g}\right)_{*}$.

Definition:

The isomorphisim $\lambda: \mathcal{G} \longrightarrow f$ generates an isomorphisim :

$$
\Lambda=i d \otimes \lambda \otimes: C^{\infty}(P) \otimes \mathcal{G} \rightarrow C^{\infty}(P) \notin=\mathcal{F} \cong \mathcal{V}
$$

Note that, $\wedge(1 \otimes X)=\lambda(X)$ and $\wedge(f \otimes X)=f \wedge(1 \otimes X)=f \lambda(X) ; f \in C^{\infty}(P)$.
Define $\theta=\wedge^{-1} o \Pi_{V}$, where Π_{V} is a connection on P.
Since, $\lambda: \mathcal{G} \longrightarrow \mathcal{f}, \wedge: C^{\infty}(P) \otimes \mathcal{G} \longrightarrow C^{\infty}(P) f=\mathcal{F} \cong \mathcal{V}$ and $\Pi_{V}: X(P) \longrightarrow \mathcal{V}$,
Then, $=\Lambda^{-1} o \Pi_{V}: X(P) \longrightarrow C^{\infty}(P) \otimes \mathcal{G}$.
A homomorphisim θ is called a connection form which its value in Lie algebra \mathcal{G}.

Theorem:

The giving of the connection on principle fiber bundle $\beta=(P, M, \Pi, G)$ is equivalent to the giving the 1 - form θ on a distribution with value in Lie algebra of structure Lie group which has the following properties:

1) $\theta o \wedge=i d$;
2) $\theta\left(f X^{\prime}\right)=f \otimes X ; X^{\prime} \in f \subset X(P)$.

Structure equation of connection.

Theorem:

The principle fiber bundle $\beta=(P, M \Pi, G)$ has connection iff the system $\left\{\omega^{a}\right\}$ satisfies the following relation:

$$
d \omega^{a}=-\frac{1}{2} C_{b c}^{a} \omega^{b} \wedge \omega^{c}+\frac{1}{2} R_{i j}^{a} \omega^{i} \wedge \omega^{j}
$$

Definition:

The relations:

$$
\begin{gathered}
d \omega^{i}=\omega_{j}^{i} \wedge \omega^{j} \\
d \omega^{a}=-\frac{1}{2} C_{b c}^{a} \omega^{b} \wedge \omega^{c}+\frac{1}{2} R_{i j}^{a} \omega^{i} \wedge \omega^{j}
\end{gathered}
$$

Are called the structure equation of connection(the first and second group respectively).

Remark:

Let $X \in X(P)$, then, $X=X^{a} E_{a}^{\prime}+X^{i} E_{i}$.

Remark:

Let θ be a connection form,
$\theta(X)=\theta\left(X^{a} E_{a}^{\prime}\right)+\theta\left(X^{i} E_{i}\right)=X^{a} \otimes E_{a}=\omega^{a}(X) \otimes E_{a}=\omega^{a} \otimes E_{a}(X) \Rightarrow \theta=\omega^{a} \otimes E_{a}$,
Then, $\theta=d \omega^{a} \otimes E_{a}$.
Denoted by $\left[\theta_{1}, \theta_{2}\right]=\omega^{b} \wedge \omega^{c} \otimes\left[E_{b}, E_{c}\right], \underline{2}$ which is called the interior commutator of the forms θ_{1} and θ_{2}.then the relation (*) can be written as the following form:

$$
d \theta=-\frac{1}{2}\left[\theta_{1}, \theta_{2}\right]+\phi
$$

Where, $\phi=\frac{1}{2} R_{i j}^{a} \omega^{i} \wedge \omega^{j} \otimes E_{a}$ is 2-form on P with value in the Lie algebra \mathcal{G} which is called curvature.

Principle fiber bundle of frames.

Definition:

Let M be n-dimensional smooth manifold, $m \in M$. Consider the space $T_{m}(M)$, Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be a basis of $T_{m}(M)$, the $\operatorname{set}\left(\mathrm{m} ; e_{1}, \ldots, e_{n}\right)$ is called a frame.

Denoted by $B M=\left\{\left(m ; e_{1}, \ldots, e_{n}\right): m \in M\right\}$ the set of all frames, then there exist a surjective map $\Pi: B M \rightarrow M$.The subset $\Pi^{-1}(m)=\{$ all frames which based at the point $m\}$, which is called a fiber over M.

Remark:

The Lie group $G L(n, \mathbb{R})$ acts freely on $B M$ on the right by the form:
$\left(\mathrm{m} ; e_{1}, \ldots, e_{n}\right) g=\left(m ; g_{1}^{i_{1}} e_{i_{1}}, \ldots, g_{n}^{e_{n}} e_{i_{n}}\right) ; g=g_{j}^{i}$.
This action is freely, because, $\exists p$ and $p g=p \Rightarrow g=I_{n}$;
$\left(\mathrm{m} ; e_{1}, \ldots, e_{n}\right) g=\left(m ; g_{1}^{i_{1}} e_{i_{1}}, \ldots, g_{n}^{e_{n}} e_{i_{n}}\right) \Rightarrow e_{k}=g_{k}^{j} e_{j} \Rightarrow g=I_{n}$.
If P_{1} and P_{2} are two frames then, $\Pi\left(P_{1}\right)=\Pi\left(P_{2}\right) \Leftrightarrow \exists g \in G L(n, \mathbb{R})$ such that: $P_{1} g=P_{2}$,
Where g is the transition matrix from the frame $P_{1}=\left(\mathrm{m} ; e_{1}, \ldots, e_{n}\right)$ to the frame $P_{2}=$ ($m ; e_{1}^{\prime}, \ldots, e_{n}^{\prime}$).

Definition:

Let (U, φ) be a local chart in M with coordinates $\left(x^{1}, \ldots, x^{n}\right)$. We define a map $F_{U}: \Pi^{-1}(U) \rightarrow G L(n, \mathbb{R})$ by $F_{U}(p)=g$, where g is the transition matrix from the canonical frame ($m ; \frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{n}}$) to the frame ($\mathrm{m} ; e_{1}, \ldots, e_{n}$).
Define a map $\psi_{U}: \Pi^{-1}(U) \rightarrow U \times G L(n, \mathbb{R})$ by the form:

$$
\psi_{U}(p)=\left(\Pi(p), F_{U}(p)\right) .
$$

We have now $B(M)=(B M, M, \Pi, G L(n, \mathbb{R}))$ is a principle fiber bundle with base space M and canonical projection Π and structure group $\operatorname{GL}(n, \mathbb{R})$. This principle fiber bundle is called is a principle fiber bundle of frames.

Remark:

Let M be an n-dimension smooth manifold, $m \in M$ be any point, $\mathrm{P}=\left(\mathrm{m} ; e_{1}, \ldots, e_{n}\right)$ be any frame with based at m, then P can be identify with the linear isomorphisim $\rho: \mathbb{R}^{n} \rightarrow T_{m}(M)$

Which defined by the form:

$$
\rho\left(x^{1}, \ldots, x^{n}\right)=X^{i} e_{i} .
$$

Definition:

Let $B(M)=(B M, M, \Pi, G L(n, \mathbb{R}))$ be a principle fiber bundle of frames and $\rho: \mathbb{R}^{n} \rightarrow$ $T_{m}(M)$ be a linear isomorphisim on $B M$, defined 1-form ω with value in the space \mathbb{R}^{n} by the form: $\omega_{p}(X)=\rho^{-1} o\left(\Pi_{*}\right)_{p}(X) ; X \in T_{p}(B M)$.
$\Pi: B M \rightarrow M$ generates $\left(\Pi_{*}\right)_{p}: T_{p}(B M) \rightarrow T_{\Pi(p)}(M)=T_{m}(M)$.
$\rho: \mathbb{R}^{n} \rightarrow T_{m}(M)$ and $\omega_{p}: T_{p}(B M) \rightarrow \mathbb{R}^{n}$.
The 1 -form ω which is defined above is called mixture form.

Definition:

The r-form $\omega \in \wedge_{r}(P)$ is called a horizontal form if $\omega(X)=0, \forall X \in \mathcal{V}$.

Theorem:

In the first and the second group of the structure equation of the principle fiber bundle of frames are given by the forms:

$$
\begin{gathered}
d \omega^{i}=-\omega_{j}^{i} \wedge \omega^{j} \\
d \omega_{j}^{i}=-\omega_{k}^{i} \wedge \omega_{j}^{k}+\omega_{j k}^{i} \wedge \omega^{k}
\end{gathered}
$$

Fundamental theorem of tensors analysis.

The setting of tensor field t of type (r, s) on smooth manifold M equivalent to the setting smooth functions $\left\{t_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{s}}\right\}$ on the principle fiber bundle of frames, which are satisfies:
$d t_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{s}}-t_{k i_{2} \ldots i_{r}}^{j_{1} \ldots j_{s}} \omega_{i_{1}}^{k}-\cdots-t_{i_{1} \ldots i_{r-1} k}^{j_{1} \ldots j_{s}} \omega_{i_{r}}^{k}+t_{i_{1} \ldots i_{r}}^{k j_{2} \ldots j_{s}} \omega_{k}^{j_{1}}+\cdots+t_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{s-1} k} \omega_{k}^{j_{s}}$
$=t_{i_{1} \ldots i_{r} k}^{j_{1} \cdots j_{s}} \omega^{k}$.
where $\left\{t_{i_{1} \ldots i_{r} k}^{j_{1} \ldots j_{s}}\right\}$ are the system of smooth functions equal to the coorsponding components of the tensor t.

Structure equation of connection in principle fiber bundle of frames.

Lemma:

Let (P, M, Π, G) be a principle fiber bundle. Suppose that θ_{1} and θ_{2} are two connection forms on (P, M, Π, G), then, $\xi=\theta_{1}-\theta_{2}$ is a horizontal form, this mean:
$\xi(X)=0 \forall X \in \mathcal{V}$.

Proof:

Since θ_{1} and θ_{2} are two connection forms, then, $\theta_{1} o \wedge=\theta_{2} o \Lambda=i d$.If G acts on P on the right, $: \mathcal{G} \rightarrow X(P), \lambda(X)=X^{\prime}$, then, $\wedge=i d \otimes \lambda: C^{\infty}(P) \otimes \mathcal{G} \rightarrow C^{\infty}(P) \otimes X(P)$, $\theta_{1} o \wedge=\theta_{2} o \wedge=i d$ means $\left(\theta_{1}-\theta_{2}\right) o \wedge=0$

But we know that $\mathcal{F}=C^{\infty}(P) \otimes \mathfrak{f}=\mathcal{V}$
Then, $\forall X \in \mathcal{V}, \exists Y \in C^{\infty}(P) \otimes \mathcal{G}$ such that $\wedge Y=X$
$\left(\theta_{1}-\theta_{2}\right)(X)=\left(\theta_{1}-\theta_{2}\right)(\wedge Y)=\left(\theta_{1}-\theta_{2}\right) o \wedge(Y)=0, \forall X \in \mathcal{V}$.

The structure equation.

Suppose that $(B(M), M, \Pi, G)$ is a principle fiber bundle of frames, and suppose that θ is a connection:

$$
\begin{aligned}
\theta_{j}^{i}-\omega_{j}^{i}= & \gamma_{j k}^{i} \omega^{k} ;\left\{\gamma_{j k}^{i}\right\} \in C^{\infty}(B(M)) \\
& \Rightarrow \theta_{j}^{i}-\omega_{j}^{i}=\gamma_{j k}^{i} \omega^{k}
\end{aligned}
$$

According to the first group of structure equation of principle fiber bundle of frames we have

$$
\begin{gathered}
d \omega^{i}=-\omega_{j}^{i} \wedge \omega^{j}=-\theta_{j}^{i} \wedge \omega^{j}+\gamma_{j k}^{i} \omega^{k} \wedge \omega^{j} \\
=-\theta_{j}^{i} \wedge \omega^{j}+\gamma_{[j k]}^{i} \omega^{k} \wedge \omega^{j}=-\theta_{j}^{i} \wedge \omega^{j}-\gamma_{[j k]}^{i} \omega^{j} \wedge \omega^{k}
\end{gathered}
$$

Where the bracket [] refer to alternative of the indexes i and j.

$$
\begin{equation*}
d \omega^{i}=-\theta_{j}^{i} \wedge \omega^{j}+\frac{1}{2} \delta_{j k}^{i} \omega^{j} \wedge \omega^{k} \tag{1}
\end{equation*}
$$

Where, $\delta_{j k}^{i}=-2 \gamma_{[j k]}^{i}$. The equation (1) is called the first group of structure equation of connection.
Similar to the principle fiber bundle, we can write

$$
\begin{aligned}
& \omega=\omega^{i} \otimes \varepsilon_{i} \text { (mixture form with respect to the canonical basis). } \\
& \qquad \begin{array}{c}
d \omega=d \omega^{i} \otimes \varepsilon_{i}=-\theta_{j}^{i} \wedge \omega^{j} \otimes \varepsilon_{i}+\frac{1}{2} \delta_{j k}^{i} \omega^{j} \wedge \omega^{k} \otimes \varepsilon_{i} \\
d \omega=-\theta \wedge \omega+\Omega
\end{array}
\end{aligned}
$$

Where $\Omega=+\frac{1}{2} \delta_{j k}^{i} \omega^{j} \Lambda \omega^{k} \otimes \varepsilon_{i}$ is 2-form in $B M$ with value in \mathbb{R}^{n} which is called the torsion form of connection. on the other hand, remember the second group of structure equation of connection in principle fiber bundle, which has the form:

$$
d \omega^{a}=-\frac{1}{2} C_{b c}^{a} \omega^{b} \wedge \omega^{c}+\frac{1}{2} \mathcal{R}_{k \ell}^{a} \omega^{k} \wedge \omega^{\ell}
$$

In the case of principle fiber bundle of frames θ_{j}^{i} play the role of ω^{a}, then,

$$
\begin{equation*}
d \theta_{j}^{i}=-\theta_{k}^{i} \wedge \theta_{j}^{k}+\frac{1}{2} \mathcal{R}_{j k \ell}^{i} \omega^{k} \wedge \omega^{\ell} \tag{2}
\end{equation*}
$$

$$
\text { Or } d \theta=-\frac{1}{2}[\theta, \theta]+\phi
$$

The equation (2) is called the second group of structure equation of connection in principle fiber bundle of frames, where,

$$
\phi=\frac{1}{2} \mathcal{R}_{j k \ell}^{i} \omega^{k} \wedge \omega^{\ell} \text { and } \frac{1}{2}[\theta, \theta]=\theta_{k}^{i} \wedge \theta_{j}^{k} .
$$

From the above disscusion, we get the following theorem:

Theorem:

The complete group of the structure equations of connection in the principle fiber bundle of frames has the form:

1) $d \omega=-\theta \wedge \omega+\Omega$;
2) $d \theta=-\frac{1}{2}[\theta, \theta]+\phi$.

Where, $. \Omega=+\frac{1}{2} \delta_{j k}^{i} \omega^{j} \wedge \omega^{k} \otimes \varepsilon_{i}, \Phi=\frac{1}{2} \mathcal{R}_{j k \ell}^{i} \omega^{k} \wedge \omega^{\ell} \otimes E_{i}^{j}$ are the torsion and curvature forms of connection respectively.

Theorem:

The connection in the principle fiber bundle of frames induce two tensor lields, the first tensor of type $(2,1)$ which is called a torsion tensor of connection, and the second tensor of type (3,1) which is called a curvature tensor of connection.

Problem:

Find $\nabla \delta_{j k}^{i}$ and $\nabla \mathcal{R}_{j k \ell}^{i}$.

Definition:

A smooth manifold which fixed connection on its principle fiber bundle of frames is called affine connection space.

Remark:

Let M be an n -dimensional affine connection space, θ be a connection form. Let t be a tensor of type (r, s) on M , according to the fundamental theorem of tensor analysis, the setting of tensor t on M equivalent to the setting a system of functions $t^{\wedge}=\left\{t_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{s}}\right\}$ on $B M$ which satisfies the equation:

$$
\nabla t_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{s}}=t_{i_{1} \ldots i_{r k}}^{j_{1} \ldots j_{s}} \omega^{k} .
$$

Where, $\left\{t_{i_{1} \ldots i_{r k} k}^{j_{1} \ldots j_{S}}\right\}$ are smooth fuctions which are given on $B M$:
$\nabla t_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{s}}=d t_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{s}}-t_{k i_{2} \ldots i_{r}}^{j_{1} \ldots j_{s}} \theta_{i_{1}}^{k}-\cdots-t_{i_{1} \ldots i_{r-1} k}^{j_{1} \ldots j_{s}} \theta_{i_{r}}^{k}+t_{i_{1} \ldots i_{r}}^{k j_{2} \ldots j_{s}} \theta_{k}^{j_{1}}+\cdots+t_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{s}} \theta_{k}^{j_{1}}$
$=t_{i_{1} \ldots i_{r} k}^{j_{1} \ldots j_{s}} \theta^{k}$.
The functions $\left\{t_{i_{1} \ldots i_{r} k}^{j_{1} \ldots j_{s}}\right\}$ are tensors of type $(r+1, s)$ this mean $\nabla t_{i_{1} \ldots i_{r}}^{j_{1} \ldots j_{s}}$ is a tensor of type $(r+1, s)$ which is called a covariant differential in the given connection and will be defined by ∇t.

Definition:

A tensor field $\nabla_{X} t$ is called a covariant derivative of the tensor field t in the direction of the vector field X, and the vector field $\nabla_{X}: \tau(M) \rightarrow \tau(M)$ is called an operator of covariant derivative in the direction of the vector field X.

Theorem:

The operator ∇_{X} has the following properties:

1) $\nabla_{X} f=X f$;
2) $\nabla_{f X+g Y} t=f \nabla_{X} t+g \nabla_{Y} t$;
3) $\nabla_{X}\left(t_{1}+t_{2}\right)=\nabla_{X}\left(t_{1}\right)+\nabla_{X}\left(t_{2}\right)$;
4) $\nabla_{X}\left(t_{1} \otimes t_{2}\right)=\nabla_{X}\left(t_{1}\right) \otimes t_{2}+t_{1} \otimes \nabla_{X}\left(t_{2}\right)$.

Where $X, Y \in X(M), f, g \in C^{\infty}(M), t_{1}, t_{2}, t \in \tau(M)$.

Corollary:

In the space M of affine connection defined operator $\nabla: X(M) \times X(M) \longrightarrow X(M)$ which has the following properties:

1) $\nabla(f X+g Y, Z)=f \nabla(X, Z)+g \nabla(Y, Z)$;
2) $\nabla(X, Y+Z)=\nabla(X, Y)+\nabla(X, Z)$;
3) $\nabla(X, f Y)=X(f) Y+f \nabla(\mathrm{X}, \mathrm{Y})$.

Where $\mathrm{X}, \mathrm{Y}, Z \in X(M)$ and $f, g \in C^{\infty}(M)$.

Definition:

The operator ∇ which has the above properties is called Kozel's operator, and we have $\nabla(X, Y)=\nabla_{X} Y$.

Remark:

The connection which identify with the Kozel's operator is called affine connectionor linear connection of the manifold M .

Theorem:

The setting of affine connection on smooth manifold is equivalent to the setting of Kozel's operator $\nabla: X(M) \times X(M) \rightarrow X(M)$ which has the following properties:

1) $\nabla_{f X+g Y} Z=f \nabla_{X} t+g \nabla_{Y} Z$;
2) $\nabla_{X}(Y+Z)=\nabla_{X}(Y)+\nabla_{X}(Z)$;
3) $\nabla_{X}(f Y)=X(f) Y+f \nabla_{X}$.

Where $\mathrm{X}, \mathrm{Y}, Z \in X(M)$ and $f, g \in C^{\infty}(M)$.

Theorem:

Let M be the space of affine connection ∇, and S, \mathcal{R} are torsion and curvature tensors respectively of this connection, then:

1) $S(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]$;
2) $\mathcal{R}(X, Y) Z=\left(\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}\right) Z$.

Where $\mathrm{X}, \mathrm{Y}, Z \in X(M)$.

Remark:

This theorem (above) explain that torsion and curvature tensors can be written in the terms of Kozel's operator.

G-Structure of the first order on smooth manifold.

We call to, $\beta_{1}=\left(P_{1}, M, \Pi_{1}, G_{1}\right)$ and $\beta_{2}=\left(P_{2}, M, \Pi_{2}, G_{2}\right)$ are two principle fiber bundles on a smooth manifold M.A homomorphisim from β_{1} in to β_{2} is a pair (f, ρ), where $f: P_{1} \rightarrow$ P_{2} is a smooth map and $\rho: G_{1} \rightarrow G_{2}$ is a homomorphisim of Lie groups such that:

1) The following diagram is commutative :

2) $f(p g)=f(p) \rho(g)$

Remark:

In particular, if $\left(P_{1}, f\right)$ is a sub manifold of P_{2} and $\left(G_{1}, \rho\right)$ is a Lie sub group of Lie group G_{2} then, $\beta_{1}=\left(P_{1}, M, \Pi_{1}, G_{1}\right)$ is called a sub fiber bundle of $\beta_{2}=\left(P_{2}, M, \Pi_{2}, G_{2}\right)$.

Definition:

The sub fiber bundle $\beta_{1}=\left(P_{1}, M, \Pi_{1}, G_{1}\right)$ is called a reduction of the fiber bundle $\beta_{2}=$ $\left(P_{2}, M, \Pi_{2}, G_{2}\right)$ by a sub group $\left(G_{1}, \rho\right)$.

Remark:

For us, the most interest is the case, where $\beta_{2}=(B M, M, \Pi, G L(n, \mathbb{R}))$ is a principle fiber bundle of frames and $\beta_{1}=(P, M, \widetilde{\Pi}, G)$ its sub fiber bundle, such that: $f: P \subset B M$ is the inclusion map, $\widetilde{\Pi}=\left.\Pi\right|_{P}$, and G is a linear group. This means Lie sub group of the general linear group with respect to the inclusion $\rho: G \subset G L(n, \mathbb{R})$.

Example:

If $G=O(n, \mathbb{R}) \subset G L(n, \mathbb{R})$, and
$P=\{$ all orthogonal frames of smooth manifold $M\} \subseteq B M=\{$ all frames of $M\}$.
In this case $\beta_{1}=(P, M, \widetilde{\Pi}, G)$ will be sub fiber bundle.

Definition:

The sub fiber bundle ($P, M, \widetilde{\Pi}, G$) which is defined as above (this means reduction of the principle fiber bundle of frames over the smooth manifold M by the given subgroup) is called G-structure of the first order over M.

