Differential Topology

PART(1)

Smooth manifold.

1-smooth structure and smooth manifold.

Definition:.

Let U,V € R™ are open subset. A map f: U — V is called a differentiable of class ¢ , if
the functions f; = f;(x?,...x™);i = 1, ...n have the partial derivative up to order .

0" fk

0T1x,..07Sx

e f(xl,. . x™=f1(x, ..., x™), ... f,(x}, ...x™) have 1+t =T

Definition:

If f is differentiable and bijective and f~1 differentiable ,then we say that f is
diffeomorphisim U on to V and then U and V' are said to be diffeomorphic .

Remark:

We will assume that » = co and in this case , we say that f is a smooth.
Definition:

Suppose that M is a housdorff space ,an open chart of dimension n in M

Is a pair (U, @), where U is an open setin M and ¢: U — ¢@(U) S R™ is a homeomorphisim
on open sub set of R™ for € U, ¢(p) = (x1,...,x™) are said to be a local coordinants of the
pointp € U .

Definition:
Two charts (U, @), (V,) ,are said to be a smooth connection, if the map :
Yo~ l:p(UNV) > YU NV)

is diffeomorphisim in Euclidean space.



Definition:
A family of n-dimensional charts on M {(U;,;)} is called an atlas if
1) All charts are to be pairwise smooth connection;
U, Ui = M.
Definition:

An atlas on M is said to be a maximal , if every chart on M which is a smooth connection
with each chart of this atlas ,then its belong to this atlas. i.e.atlas in M is maximal if its no
contained in any other atlas.

Definition:
A maximal atlas is called a smooth structure .
Definition:

A space M with smooth structure is called a smooth manifold.




Definition:

Two smooth structure on M are said to be equivalent , if each two charts are smooth
connection.

Example:(about non-equivelent smooth structure)
Suppose M=R,
U, ¢);U=R,p =id;
V,9)V =Ry =x*
Exampls:(about smooth manifolds)
1) M=R" Euclidean space is an n dimensional smooth manifold.
A maximal atlas consist of one chart (R", 1gn) ; where 1gn: R™ — R" is the identity map.
2) Every finite dimensional linear space is a smooth manifold.
Suppose that V is an n dimensional linear space;
Let @« = (eq, ..., e,) be a basis for V. consider a map :
0V — RY @, (x) = (1 ..., x™)

Where (x1,..,x™) are the coordenentes of the vector x €V in the basis a.
Clearly,q,, is bijective and then is a homeomorphisim .

If B = (€1, ..., €5) is an another basis in V and @z:V — R™ given by @g(x) = (x1, ..., x™);
x1,...,x™ are the coordenentes of the vector x € V in the basis

NOwW,@qp = @po@,: R™ — R™ givis the equation :
Yi=ClX5i=1,..,n,
where (Cj") is the transition matrix from the basis g to the basis « .

Clearly that ¢,z is diffeomorphisim .Therefore, every basis a in V generats a chart (V, ¢,)

in V will be atlas in V and then defind a smooth structure. Therefore, V is n dimensional
smooth manifold .

Remark:

Suppose that M and N are smooth manifolds of dimensions m and n respectively
with the smooth structures :



{(Uaf (Pa)}aeA and {(VB» wﬁ)}BEB-

Then, the setM X N has smooth structures which is generated by the family
{(Waﬁ:Xaﬁ)}aeA,ﬁeB-

Where Wep = Uy X Vg, Xop = Qo X Pp.

The smooth manifold M x N will be of dimension n+m which is called a product
manifold of M and N.

Clearly, this structure can be extended for any number of manifolds.

For example ,the product of any n copy of St is n dimensional smooth manifold which
Is denoted by T™ and called n dimensional torus .

2-Algebra of smooth functions on smooth manifold .

Definition:

Let M™ be a smooth manifold. A map f: M — R is called a smooth function on M ,if
for any chart (U, @) on M, the map fop 1@ (U) — R is smooth map of Euclidean space.
Denote by C* (M) to the set of all smooth functions on M .

The set € (M) will be algebra over field R with operations:

1) (fF+9®) =1k +g9p@);
2) (Af)(p) = Af(P);
3) (f-9)) =fP) 9.

Wherep e M, f,g € C*(M),A € R.

Algebra € (M) is called an algebra of smooth functions on the manifold M.

3-Vector field on smooth manifold .

Definition:

Suppose that C*(M) is algebra of smooth functions on M . A linear operator
X:C*(M) — C* (M) is called a differentiation of algebra C* (M)

It  X(f.g)=X(f).g+f.X(g); f,ge (M) .By the another way the map
X:C®(M) — C* (M) is called a differentiation of algebra C* (M) if:

1) X(f +9) = X(f) + X(9);



2) X(Af) = AX(f);
3) X(f-9) =X(f).g + f.X(g).

Where,ge C*(M) ,A€eR.

Clearly that the set X(M) of all differentiations of algebra C* (M) represent a module
over aring C* (M) with operations:

1) X+ =X +Y()
2) (gX)(f) = g.X(f).
Where X,Y €e X(M) ,f,g € C*(M).

Definition:

A differentiation X(M) of algebra C*(M) is called a smooth vector field on a smooth
manifold M.C*(M)-module X(M) is called a module of smooth vector fields on manifold
M.

Proposition:

Let M be a smooth manifold , X € X(M) ,X(C) = 0; Cis a constant.
Theorem:

Let (U, @) be a local chart with coordinates {x1, ..., x™} on a smooth manifold M ,then

the module X(U) generated by {%,...,%}, in particular,vX € X(M)then X =

n ii

i=1 9t

Definition:
The basis 667 ) e ,667 of the module X (U) is called a canonical basis.

4- Tangent vectors and tangent space

Definition:
Let M be a smooth manifold and let p € M . A tangent vector X,, at p is a map
Xp,:C*®U)—R

Where U is an open neighborhood of p ,such that:



1) X, (Af +ng) = AX,(f) + uX,(9);
2) X,(f-g9) = Xp (). g(0) + f(0)X,(9);

foreachAL,ueR, f,geCc® (U)

Note:

The tangent space T,,(M) carries natural operations + and . turning it in to real vector
space. i.e. Forall X,,,Y, € T,(M) f € C*(M),1 € R,

1) (Xp +Yp)(f) :Xp (f) +Yp(f)
2) (AXp)(f) = AX, ().

Theorem:

The giving of vector field X € X(M) on n —dimension of smooth manifold M
equivalent to giving family of tangent vectors {X,, € T,(M)} on M such that: in each local

chart (U, @) with coordinates {x?, ..., x™}, the functions X'(p) = X, (x") belong to algebra
Cc* ).

5- Lie algebra of vector fields on a smooth manifold .

Let M be a smooth manifold, X(M) be module of it is vector fields,X,Y €
X(M),its easy to check that X o Y does not be vector field . if , g € C* (M) , then:

XeoY(f.9) =X (f.9))
=X(Y(f).g +f.y(9)
=X(Y ()9 +Y()-X(g)+X().Y(g) + f.X(Y(9))
=XoY(f).g+Y(f).X(g) +X(f).Y(g) +f.X°Y(9)
In other hand if we change the vector fields X, Y we get :
YoX(f.9)=YeX(f).g+X(f).Y(g)+Y().-X(g)+ f.(Y > X)(9)

Now:

(XY =YeX)(f.g) =Y =YoX)(f)g+f.(XeY =Y X)(g),
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Thismeanthat (X oY — Yo X) € X(M). Denoted by [X,Y] = (X oY — Y o X)
Definition:

The operation o: X(M) X X(M) — X(M) which is defined by o(X,Y) = XoY —YoX =
[X, Y] is called a commutator of X and Y and the symbole [X, Y] is called a commutator or
Lie bracket .

Proposition:
prove that :

1) [x, Y] =-[y,X];
2) [[X, Y], 21+ [lY,.z,1X] +[[z, X],Y] = 0.

Definition:

The pair (X(M), o) is called a Lie algebra of smooth vector field of smooth manifold M.
Proposition:

The commutator operation is notC* (M) — linear map.
Remark:

We can write the commutator of vector fields X and Y in the local chart (U, ¢) with
coordinates {x?, ..., x™} as follows :

X=Xlﬁ ;Y=Y]E ,then,
X, Y] =[x, Y1(x) = X (v(x) - v (X(x1)) = X(v¥) -y (x) =25 x/ - 25 v

6-Tensor algebra of a smooth manifold .

Let V be a module over a commutative and associative ring K with identity or (K —
module), VV* be dual module of K- linear functions on V with value in K . we have V =
V= (V*)* by the map 7: V — V** which is defined by t(x)(w) =w(x);x €V ,w e V",
The module V is called a reflexive if the map 7 is isomorphisim .

Definition:

Let V be a reflexive K-module . consider a K-module 73 (V) , the set of all maps

VXV X..XVXV*XV*X...xV*— K which are K-linear in every argument. It is
r—times s—times




element are called r-times covariante and s-times contravariants tensors of module V .For
short are called tensors of type (r,s).

Definition:

Define an operation ®: 7, (V) x 7,2(V) — 7,1t2(V) as follows:

Ift; € 7,)(V) and t, € 7,2(V), then t; ®t, € 7,"**(V) such that :

1 N —
(E1®t2) (Ug) vovy Up gy, s V) e, VIIFS2 ) =
1 S s1+1 S1+S
ty (Ups o Uy, V5 e, VD)8 (Up 41 s vy Upy oy, VT, 0, U51T52) S WHETE Uy, o, Uy g, EV
and vl ..., vSits2 € V*

Theorem:

The operation ® has the following properties :

1) t1®(t2 + t3) = t1®t2 + t1®t3,
2) (t; +t)®t; = t;t3 + t,Qt3;
3) t,®(t,Rt3) = (t,®t,) Qt; .

The operation ® which has the above properties , is called a tensor product .
The K-module (V) = @;2,®s=, 7, (V) with tensor product is called a tensor algebra.
Remark:

From the reflexivity of V ,we have:

) =V >k =vr=V , V) ={t:V > K}=V".

Definition:

From the above definition we get that the sub modules 7, (V) = @9, (V) and
(V) = ®2,t5 (V) represente sub algebras of the tensor algebra (V) and thy called
covariant and contravariante tensor algebra of V' respectively .

Remark:

If V is afinite linear space over a field K and {ey, ..., e,,} is any basis of V,
{el,...,e™} is adual basis , then,
. . (LIfi=j
l . = l =
e (e]) 6] {0 Ifi+] , then,
-8



The tensor of the forms :
e, ®.Q¢ & et ®..Qels;
Iy, ey lp 5 Jj1, - Jr = 1,...,n, are basis of linear space t; (V) . In particular, we have :
dimzi(V) =n"ts
Remark:
The coordinates {tijll”_::’i’:} of the tensor t € 77 (V) in this basis are equal to it is
components . i.e. ,
t/ds = t(ey, .o e, €01, ., €55)
Definition:

Let M be n-dimensional smooth manifold , p € M , then, the tensor algebra =(T»(M))
denoted by 7,,(M) and is called a tensor algebra of the manifold M at the point p .In the

other hand t(X(M)) denoted by t(M) and is called a tensor algebra of manifold M .The
element of the tensor algebra are called a tensor fields .

Definition:

A dual of the module X (M) is called a module of differential 1-form on manifold M, and is
denoted by X*(M);

X*(M) = {t: X(M) — R}

Theorem:

The giving of tensor t € (M) on smooth manifold M equivalent to the giving family
of tensors{t,, € 7;;(M); p € M} such that, in each local chart (U, ¢) with coordinates
{x1,...,x™"} on M, the functions,

hods (o) = 02 2wt
til,...,irs(p) - t(axil |p) "')axir |p; Wp ) wus Wps) .

Where{w,, ..., w;} is the dual basis of the canonical basis of the spaceT, (M) at the point €
M .



7-Grassman algebra of smooth manifold.

Operator of exterior differentiation .

Let T, (V) = @©2,72(V) be the covariant tensor algebra of reflexive K-module V . In
the module 72 (V) acts symmetric group s, of order r (permetation group) as the following:

If module t € 2(V), 0 € s, , then(ot) (x1,....%,) = t(Xo1)s wer Xo(r))-
Definition:

The tensor t € t2(V) is called a symmetric, if V o € s, ,then ot = t and the tensor t €
72(V) is called antisymmetric if for each o € s,., then ot = £(o) where (o) is the sign of
permetation which equal to 1 for even permetation and -1 for odd permetation:

(1 if oeven
g(")‘{—1 if oodd

Note:

Clearly that the symmetric and antisymmetric tensors are submodules of the module
72(V) and we will denote them by S, (V) and A, (V) respectivly .

Definition:

Define endomorphisims Sym and Alt of 72(V) as follows:

1 1
Sym(t) = ;ZoESr ot ;Alt = ;ZaESTE(O’)t :

Which are projections ;on modules S,-(V) and A,. (V) respectivly , and are called symmetric
and alterative operators .Define an operation as follows:

A% (V) XNs (V) —Nris (V) :
If w; €A, (V), w, EAg (V) , then w; Aw, €A, (V) which is defined by the form:

(r+s)!
rls!

Wl N WZ == Alt(W1®W2) .

Proposition:

Prove that :

1) (wy +wy) Aws = wy Awg +w, Aws;
2) wi A(wy +w3) = wy Aw, +wy Aws,
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3) wi AWy Aws) = (W Awy) Aws .
Definition:
The operator A is called an exterior product .
Let A (V) = @72 N\ (V) ,where Ay (V) =K ,and Ay (V) =V".
A (V) with operation A is called an exterior algebra .
Remark:

If A, (V) ,then,w:V X ...x V — K , which is called a form of degree r or r-form.
r—times

Definition:

Let V be an n-dimensional linear space over a field K ,{e,, ..., e,} be a basis of V , then
the r-forms:

.....

, In this basis, considens with it is components, i.e.

Wi i = w(e, -, e)

n!

Clearly that dima, (V) = () =

rin-r)!"’
Definition:

Suppose that M is smooth manifold . Exterior algebra A (X(M)) denoted by A (M)
which is called a Grassman algebra of smooth manifold M .It is elements are called
differential form .

Theorem:
Suppose that M is a smooth manifold, then there exist a unique mapping:
d:AN (M) =N (M)
With the following properties:

1) d(Ar (M) CAvyq (M);

2) df (X) = X(f);
3) dod = 0;
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4) d(W1 N Wz) == dW1 A Wy + (_1)TW1 A dWZ ,
Where w; €A, (M), w, EA (M) .
Definition:

The operator d which has the above properties is called the operator exterior
differentiation .

Proposition:

Suppose that M is a smooth manifold , (U,e) is a local chart with
coordinates{x, ...,x,} on M and {%, ...,%} is the canonical basis for the module X (U)
1 n

,then the differential 1-forms {dx;, ..., dx,} is the dual basis of the canonical basis of X (U)

8- Smooth map,differential of smooth map.

Proposition:

Suppose that M and N are smooth manifolds, a map ¢: M — N s called a smooth ,
ifvf € C*(N),thenf o¢p € C*(M).

Remark:
The above definition equivalent to the following:

A map ¢: M — N s called a smooth , if for each chart (U, ) on M and (V,y) on N with
coordinates {x4, ..., x,} and {y, ..., y, } respectivly, then, the map :

wopopt:p(U) — (V)
Is a smooth of Eucledian space .
Note:

If the smooth map ¢ is the bijective such that the map ¢~ is smooth, then the map ¢ is
called a diffeomorphisim.

Definition:
Let p € M, define a map:

(h.)p: Tpy(M) — Ty (N) as follows:
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Let € T,(M), (¢.),(E)(f) = E(fod) ;f € C*(N). The map (¢.), is called a differential
map of the smooth map ¢ .Note that (¢.), (&) € Ty (N) .

9- ¢ — connection of vector fields.

Definition:

Let ¢: M — N be a smooth map, the vector fields X € X(M) ,Y € X(N) is called ¢ —
connection ,if Vf € C*(N) ,then X(fogp) =Y (f)od .

Theorem:

The vector field X and Y are ¢ — connection iff vp € M , then (¢.),X, = Yp(p) -

Remark:
We will dente by Y = ¢, X.
Definition:

The vector field Y = ¢, X is called a dragging of the vector field X with respect to the
map .

IfY, = ¢.X; and Y, = ¢, X, , then, Prove that:[Y;,Y;] = ¢.[X1.X2] .
Remark:

By the same way for the vector field € X(M) , we can define the dragging ¢.X , where
¢.:X(M) — X(N) , then ¢;1 = ¢p*: X(N) — X (M) which is called an anti-dragging of
the vector field.

10-Distribution and co distribution .

Definition:

A sub module D of the module X(M) is called a distribution on M . The distribution D
is called r-dimensional , if there exist atlas on M such that each chart (U, ¢), then,

D|U = {X|D : X € D}
Is a module of r-dimension .
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Remark:

The giving of r-dimensional distribution on M is equivalent to the giving the family {D, c
Tp(M):dimD, =1} .

Definition:

A sub module C of the module X*(M) is called a codistribution .
Definition:

Suppose that D is the distribution on M .The sub module :
Cp ={wen (M):w(X)=0,VX €D}

Is called a codistribution associated with the distribution .
Theorem:

If M isan n-dimensional smooth manifold , and dimD = r, then, dimCp, =n —r.
Proof:

Suppose that {X;, ..., X,-} is a local basis for the distribution D . Compelet this basis to
the basis {X;, ..., X,,} for the module X(M). Let {w?, ...,w™} be a dual basis . Letw €
X*(M), then,

w =Y, aw’, where a; = w(X;). We have :
weCyiff wX)=0,YyXeDiffa, =wX,)=0,k=1,..,1

Then we get = a,. . W't + - + a,w™, since the form {w”*1, ..., w™} are linearly
independent, then are will be basis of the module Cp,.

Therefore, dim Cp, = n —r.

11-Sub manifold of smooth manifold.

Definition:

Suppose that ¢: N — M is a smooth function , the rank of ¢ at p € N is the rank of
the(¢.)p: T, (N) — Ty (M). The dimension of range (¢,),, is called the rank of (¢.),,.

Definition:

A smooth map ¢: N — M is called an immersion if it is rank equal to the dimension of

N .
-14



Definition:

Suppose that ¢: N — M is a smooth map, if ¢ is an immersion, then we say that the pair
(N, ¢) is an immbeding sub manifold. In this case, if ¢ is an injective, then the pair (N, ¢)

Is called a sub manifold of M.

If (N, ¢) is a sub manifold of M ,such that the map ¢ is an open , then we say that
(N, ¢) is an inclusion sub manifold of M and ¢ is called an inclusion map .

Example:

LetN =1 c R,a;:1 — M is asmooth curve ; i=1,2,3 , which are defined as following

diagrams:
a, l
v
aq

Recoeenen r’ 6 443 «—

| aq(t) a,(t) as(t)

1) (I, a;) is immbeding sub manifold , but not sub manifold ;
2) (I, a,) is sub manifold , but not inclusion sub manifold ;
3) (I, a3) is inclusion sub manifold .

a3

PART(2) :

Lie group and Lie algebra .

1-Lie group:

Definition.
A Lie group isagroup G which is al so smooth manifold such that, the map:
$:GXG— G
Which is defined by:

P(x,y) =x.y™"
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Isasmooth Vx,y €G.

Proposition:

Suppose that G is a Lie group,then an operation a: G — G and a(x) = x~1 is a smooth .
Proof:

The map a: G — G can be written as the form:

le P
x: S(e,x) Se.x !t =x1

Where e is the identity element of G. The map a = @oi, is a smooth , since i,and ¢ are
smooth .

Proposition:

The map u: G X G — G, where u(x,y) = x.y is asmooth .
Proof :(H.W).
Examples:

1) The space R™ = {(x4, ..., x,): x € R} is a Lie group with respect to the operation
+.,

Solution:

Letx = (x;),y = () € R™
(x).(v;)) =x; +y;,and (x;)"1 = —x; , then (x,y) = x.y~1 - ;.
Therefore, the map ¢ gives asmooth mapsu; = x; —y;,i =1,...,n

Hence, ¢ is a smooth map which means that R™ is a Lie group .

2) C*={z € C;z =+ 0},isalLiegroup with respect to the complex product
operation .

Solution:

LetZl=x1+iy1,Z2=x2+iy2;Z=x+iye C,then,

. - x—ty
21.23 = (X1 — V1Y) +i(1y2 + x21) 271 = x2+y2
X2—lY2 _ X1X2%Y1Y2 | . —X1Y2+V1X3
(2,25) =x, + 10 = +i ,
N AT X33
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The map ¢ gives a smooth functions,

L = KXo +Y1Y> y = a2 + Y1 x>
1= — % 1.2 U2 = :
X3 + 3 X3 + 3

3) Let G, and G, be a Lie groups, then the smooth manifold:
Gy X G, ={(91,92):91 €EGL N g, € Gy}
Is a Lie group with respect to components of groups operation:
(g1, g2)- (hy, hy) = (g1hy, g2ho);
(91,92)7 = (911, 921).

Karatan's theorem :

Suppose that G isa Lie group, A c G is a closed sub group of , then A is a Lie group .
4) LetSt={zeC:|z|=1},(St c C)
Solution:
If 2,2z, € ST = |z1.2,| = |z4|.]2,| = (1)(1) = 1, thus z;.z, € ST

IfzesS!=|z71 =|;1I=%= 1,thus z~t € S1,

Therefore, St is a sub group of C*.

Let {z,} be asequence in St and lim z, = z,

n—oo
S0 |z| = | lim z,| = lim | z,| = lim 1=1.
n—oo n—oo n—oo
Thus, z € St , therefore S is closed .
Hence , by Karatan's theorem , we get that S* is a Lie group .

5) General linear group .

GL(n,R) = {A = (aij) € Mn,n: detA + 0} .

Solution:

Clearly that GL(n, R) is open sub set in M,, ,, = (R™)?*, then, GL(n, R) is a smooth
manifold and group .
17



@:GL(n,R) x GL(n,R) — GL(n, R)
QO(A; B) = A.B_l =C = (Cij)

n n

. n ,
B B -1 = (D05 o D agdp
= ) @B = D au— g = ) e

Where Aj is the complement of By,
Clearly that c;; are smooth functions, therefore, ¢ is a smooth .
Hence, GL(n, R) is a Lie group.
6) Orthogonal group of order n.
GL(n,R):A"1=AT}0(n,R) ={A €
Then, by Karatan's theorem, O(n, R) is a Lie group .
7) Unimodule group SL(n,R) = {A € GL(n,R): detA = 1};
8) Spicial orthogonal group SoL(n,R) = 0(n,R) N SL(n,R) ;
9) Complex general linear group GL(n, C) = {C = (c;;):¢;; € C;detC # 0} ;
10) Complex orthogonal group (n,C) = {C € GL(n,C):C~1 = CT};
11) Complex unimodule group SL(n,C) = {C € GL(n,C):detC = 1};
12) Complex orthogonal unimodule group SoL(n,C) = 0(n,C) N SL(n,C);
13) Unitary group (n) = {C € GL(n,C):C~t =CT}.

Realization of general complex group.

GL(n,O)® = {A € My, iAo ] =] 0 A}

Where | = (IO 0
n

0 -I 0 -I —1 0
2 _ — n ny _ 2n
rer=G, )G 0)= 0o )
A 4
Ay A,

”) , it is easy to check that 2 = —1I,,, ,
Let € GL(n, QR4 = (

) . then,
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_ A1 Az 0 _In _ 0 _In Al AZ — —
aep=roa= (0 )G, 0=, 07) (e a) == aeis

_ (A1 A
A,. Therefore, we get = (_Az A1> :

IfC=A+\/—_13then,=(A _B).

B A

GL(n, O® c GL(2n, R),closed sub group, and then by Karatan's theorem it will be Lie
group.

Proposition:

GL(n,C) = GL(n,O)R.
Solution:
Define ¢: GL(n,C) — GL(n, Q)R as :
If = (¢;;) € GL(n,C), where (c;;) = a;; +V—1 B,
Consider matrices A = («;;) and B = (B;;) € GL(n, oOr,
And C = (A+V=IB) € GL(n,C),then p(A +V=1B) = (‘; _AB)) € GL(n, O)R.
Prove that ¢ is an isomorphisim .

Semi — direct product of Lie grops.

Let G = GL(n,R)and H = R" are be Lie groups .we know that M = G X H has Lie
group structure , this Lie group is the direct product of Lie groups.But there is another Lie
group structure :

Let (4,X),(B,Y) € GL(n,R) x R™, define the operation = by:
(4,X)* (B,Y) = (AB,AY +X) and (4,X)"t = (471, —-4"1X).
Directly, from this operation we can prove that M = G X H is a group (check).
Define p: M X M — M by:
o((4,X),B,Y)N)=(4,X)«(B,Y)1=(4,X)*« (B, —B~1Y) = (AB™1,,—AB~1Y + X).

Then we get that ¢ is a smooth map .Threfore, GL(n, R) < R" is a Lie group , and is called a
semi- direct product of Lie groups GL(n,R) and R".
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2- Lie algebra .

Definition:
A space G over a field [F is called a Lie algebra if the binary operation, [.,.1:G X G — G
Satisfies the following properties :

1) [X,Y]=—[¥,X];
2) [[Xx,YLZ] +|IY,Z], X] + [[Z, X],Y] =0 .

Note:
We will assume that = R..

Examples:

1) suppose that M is a smooth manifold , then the module X(M) is a Lie algebra under
operation :

[X,Y] = XoY —YoX;X,Y € X(M) .
2) Every arthemetic linear space Vis a Lie algebrawith [X,Y]=0,X,Y eV .
3) Every associative algebra A is a Lie algebra with respect to the operation :

[X,Y]=X.Y-Y.X;X,YEA.

In particular, the general matrix algebra [4, B]JA.B — B.A ;A,B € M, ,,

Where . s the product matrix operation .

3- Lie algebra of Lie group .

Definition:

Let GbealLiegroup, g € G, define maps :
Ly:G — Gand Ry;:G — Gy Ly(h) = g.h,Ry(h) = h.g
Ly is called a left shift to element g .

R, is called a right shift to element g.
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The maps R, and L, are a smooth maps have the following properties :
1) LyoLp =Lgp : G — G;9,hE€G.
(LgoLn) (@) = Ly(Ln(p)) = Lg(hp) = g(hp) = (gh)p = Lgn(p) -
Therefore , LyoL, = Ly, .
2) RQORh = Rhg , (H W)
3) The maps L, and R, are diffeomorphisim . This can be get directly from,
VgEG,(Ly) t =L1and (R)) ™ =Ry,
Then, Lyo(Ly,)™" = LgoLy-1 = Lyo4-1 = L., Where e is the identity element of G,
leL,(gd=eg=g.

By the same way , we have:

(Ly)~toLy = Ly-10Ly = L

g-1g = L.

g

Therefore, we get that L is isomorphisim, and since Lg, L,-1 are differentiables (smooth),
then we get that L, is diffeomorphisim .

Definition:

A vector field X € X(G) is called a left invariant ,if Vg € G, then (L,).X = X, where
(Lg)«: X(G) — X(G) is the differential map of the smoothmap L,: ¢ — G .

Theorem:

A set G of all left invariant vector fields on Lie group G is a linear space which is
isomorphic to the tangent space T, (G) of Lie group G at the identity.

Inparticular,im G = dim G .
Definition:

The Lie algebra G(G) of all left invariant vector fields of Lie group G is called a Lie
algebra of Lie group.

Proposition:

The linear space G of all left invariant vector fields of Lie group G is a Lie algebra with
respect to the commutator operation of vector fields.

Proof: (H.W).
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4-Homomorphisim of Lie groups and Lie algebras .

Definition:

A map @: G — H of Lie groups is called a homomorphisim of Lie groups if:

1) ¢ is smooth ;
2) p(x,y) = p(X)e(y),x,y €G.

Definition:
A ma ¢: G — 4 of Lie algebras is called a homomorhpisim of algebras if:

1) ¢ isalinear map ;
2) plX, Y] =[¢X,9Y]; X,Y €G.

5-The action of Lie group on a smooth manifold.

Definition:

Let G be a Lie group and M be a smooth manifold, we say that G act differentially on M
of the left, if there exist a smooth map ¢:G X M — M which satisfies the following
conditions:

1) Vg € G,the map ¢,:M — M which defined by ¢,(m)=¢@(g,m)=gm Iis
diffeomorphisim.

2) gn(m) = @g00,(m) = @4(@p(m)) = g(hm).vg,h € G,m e M.
Note that ¢,(m) = em = m where_e is the identity element of G.
Definition:
We say that G acts effectively if satisfies : If ¢,(m) = m,vm € M then g = e.

And we say that G acts freely , if ¢,(m) = m for some m € M, then g = e.

Definition:

The Lie group G act on M of the right , if there exist a smooth map ¢: M X G — M
which satisfies the following conditions :

1) Vg € G,the map ¢,:M — M which defined by ¢,(m)=¢@(m,g) =mg is
diffeomorphisim.
2) Pgn(m) = Prowy(m) = gy (94(m)) = 91 (mg) = (mgdh,¥g,h € G,m € M.

Example:
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Suppose that V is n-dimensional linear space , denoted by S to the set of all basis of V.

The Lie group GL(n, R) acts on g of the right as the follows:

Let= (e, ...,e,) € B,9 = (g]i-) € GL(n,R).

Put ¢4 (b) = (g"€s ) '€, -

We know that ¢; = gijej, (i=1,..,n),

Where (gij) IS the transition matrix from the basis { e, ..., e, } to the basis {¢, ..., &, }

py(b) € B
Clearly that ¢, is bijective and the diffeomorphisim.
Let,h € GL(n,R), then,
Pro@g(b) = pnopg(ey, ..., ey)
= @n(&g, o, &) = (hileil, ---:h;nfin)
= (h;lgijllejl, ...,hil”gi];‘ejn)
= (e, -, (g)e;,)
= @gn(b)
Therefore, ¢4n, = @ro9, .

Then the Lie group GL(n, R) acts on 8 on the right .

PART(3)
Princible fiber bundle space .
1- Princible fiber bundle.

Definition:

Suppose that the Lie group G acts on smooth manifold M then for each m € M generates
amap &,:G — M, suchthat, foreach g € G, 6,,(g) = @,(m).
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The image of §,,,called an orbit of the point m € M .The set of all orbit will be denoted by
OrbzM which is a smooth manifold .

Definition:

A princible fiber bundle is a set of four (P, M,II, G) , where P is a smooth manifold, and
G is a Lie group which is acts freely on P of the right , M=Orb P is the space of the orbits.

[I1: P — M, is a projection (which is smooth), such that the following are satisfies:
There is an open cover U of M, such that ,
Vu€eU,3E;:II"1 (U) > G
Where (F, is a smooth map) satisfies the conditions:

1) F,(pg) = F,(p)g;(p € P, g € G);
2) The map y,: E,;: 1171 (U) — U x G satisfies:

Y, (p) = (II(p), E,(p)) is diffeomorphisim.
P: is called a fiber space (total space);

G: is called a structure group;

M: is called a basis of fiber bundle;

IT: is called a canonical projection;

vm € M, 11" 1(m) is called a fiber over m .

UXG

--24



Example:
Consider (P, M, 11, G), where M and G smooth manifold and Lie group respectivly.

P=MXG; Il;: M x G — M is the projection on the first factor (I, (m, g) = m). The Lie
group G acts on P of the right as follows:

op(m, g) = (m,g)h = (m, gh).

This action is freely because if ¢,(m,g) = (im, g), so(m, gh) = (m, g), then, gh = g and
thush =e.

Now: suppose that the open cover U consist of element U = M.

1) Fy(p) = Fy(m, g) = g = 1(p) = Fy =1l;

Fy(pg) = Fy((m, h)g) = Fy(m, hg) = NI,(m, hg) = hg = I,(p)g = Fy(p)g;

2) Yy, is diffeomorphisim .

MXG=P

Definition:

Suppose that g, (P,, M, 114, G,) and B, (P,, M, I1,, G,) are two fiber bundle spaces, a
homomorphisim fiber bundle from g, to B, is a pair (f, p) , where f: P, — P, is a smooth
map and p: G; — G, is a homomorphisim of Lie groups such that:
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1) The following diagram is commutative,

\ /Hz

2) Vp € Py and Vg € Gy then f(pg) = f(p)p(9).

In particular, if (P4, f) is a sub manifold of P,, and (G4, p) is a Lie sub group of G, then,
B, is called a sub fiber bundle of S, .

Note:

Another important case, if f is a diffeomorphisim, and p is an isomorphisim of Lie
groups, then the pair (£, p) is called an isomorphisim of principle fiber bundles, or we say
that 8, and S, are equivalent principle fiber bundles .

Structure equation of principle fiber bundle .

a-Introduction:-

Definition:
A smooth map ¢: M — N is called submersion if its rank equal to the dimension of N.

Theorem[*I:

Suppose that g = (P, M, 11, G), is a principle fiber bundle, thenthe map I1: P — M ... ......
Definition:

Suppose that g = (P, M, 11, G), is a principle fiber bundle ,denote by X (P) to the space
of vector field of P, such that if its [T-connection with the vector fields on M , i.e.

Xg(P) ={X € X(P):3Y € X(M): [I.X = Y}.
Denote by V = kerIl, , then on P appear distribution V = C®°(P)®V, i.e.
V= fX:f,€C®(P)X; €V}.
The distribution V is called a vertical distribution on .
Note: According to theorem[x], we have, if p € P any point, then,

dimV, = dimV, = dimker(Il,), = dimT,(P) — rank(1l,), = dimP — dimM .
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Fundamental Lie algebra.

Definition:

Suppose that a Lie group G acts on P (of the right), then defined a map :
1:G — X(P)

(since, if G actson P, then §,,: G — P is an orbit which is a smooth map).

The map A generate vector field X'=A(X) € X(P), Ais called a homomorphisim of Lie
algebras, i.e :

A([X,Y]) = [AX, AY]

The image of A4 is a Lie sub algebra # < X(P), its elements are called fundamental vector
fields on P. The Lie algebra # is called a fundamental Lie algebra of vector fields on .

Remark:
The Lie algebra # generates sub module F = C* (P)®4# of the module X(P), i.e:
F={QfiXi: fi€eC*(P),X; € £}

Proposition:

The map A: G — # is an isomorphisim .
Theorem:

The distribution V and F on the P are concides and dimG = dimP — dimM = dimV

b- the structure equation:

Suppose that 8 = (P, M, I1, G) is a principle fiber bundle, V its vertical distribution, and
the indises:

Ljk,..=7r+1,..,7r+n;
a,b,c=1,..,n ; n=dimM;
a,fy=1..,r+n ; r+n=dimP.

Suppose that {E;, ..., E,} is a basis of the algebra . since, A: G — # is isomorphisim, then
the vector fields {Fj, ..., E}} is a basis of the linear space #, then, a basis of distribution F =
V.

Lemmal1]:

Suppose that D is r-dimensional distribution on a smooth manifold M,then for each basis
for the D,we can complete this basis to the basis for the module X (M) .

27



Lemmal2]:

Suppose that {Ej, ..., E,,} Is a basis of the algebra G, then, [Ei,Ej] = CjikEk, where jik are
called the constant structure of Lie algebra.

Lemma[3]:
Suppose that {w'} is a basis of a codistribution , then,

dw' = wj Aw’ ; w; €N (P).

Theorem:
The structure equation of principle fiber bundle g = (P, M, 11, G) are :
1) dw' = w}Aa)j;

—_1 b j
2) dw® = —ECgca) AN+ wf Ao’

Connection on principle fiber bundle.

Definition:
A projection from the module X (P) on the sub module V is called a vertical projection.
Definition:

We say that the endomorphisim f of the module X(P) is invariant with respect to the
action of the Lie group ¢ if for each g € G, then, (@y).of = fo (¢4). ; {@4: P — P}.

Since G acts on P of the right, then, ¢, can be written as R, and then we have,
(Rg).of = fo (Rg). i Rg(p) = ¢4(p) = pg.
Definition:

A vertical projection which is invariant with respect to the structure group is called a
connection on principle fiber bundle, this means,I1;, € End (X (P)) is a connection if,

1) HVZ = Hv,

3) Vg € G, we have (Ry).oll, =TIy 0 (Ry). .
Definition:

Suppose that II,, is a vertical projection in , then, Il = id — I1, is the complement
projection.
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A distribution H = kerIl, =Imlly is called a horizontal distribution, and the projection ITy
Is called a horizontal projection.

Proposition: (H.W)

Suppose that II;, is connection (i.e. 1y, is invariant w.r.t. action of the structure group G),
then, I1 also is invariant w.r.t. action of the structure group G.

Theorem:

The giving of the connection on a principle fiber bundle g = (P, M, I1, G) is equivalent to
the setting of distribution H < X (P), such that:

1) X(P) = VOKH ;
2) (Rg).olly = M,0(Ry). .

DefinitiOn:

The isomorphisim A: G — # generates an isomorphisim :

A=1d@IQ: C”(P)Q®G — C(P)f =F = V.

Note that, A (1QX) = A(X) and A (f@®X) = f A(1QX) = f A(X) ; f € C*(P).
Define 8 =A~1 oll,,, where II,, is a connection on P.
Since, 1:G — #, ANC¥(P)®G — C¥(P)f=F =VandIl: X(P) — 7V,
Then, =A~1 0ll,: X(P) — C®(P)®G .

A homomorphisim 8 is called a connection form which its value in Lie algebra G.
Theorem:

The giving of the connection on principle fiber bundle g = (P, M, II, G) is equivalent to
the giving the 1- form 6 on a distribution with value in Lie algebra of structure Lie group
which has the following properties:

1) o A=id ;

2) 0(FX) = fQX ;X' € # c X(P).

Structure equation of connection.

Theorem:

The principle fiber bundle g = (P, M 11, G) has connection iff the system {w®} satisfies
the following relation:

1 ) .
dw? = —ECgca)b A w¢ + Equjwl Aw! ... (*)

--29



Definition:
The relations:

da)i=a)}/\a)f;

dw® = —ECgca)b A w© +%R§‘ja)i Awl .
Avre called the structure equation of connection(the first and second group respectively).
Remark:

Let X € X(P), then, X = X%E + X'E; .
Remark:

Let 8 be a connection form,
0(X) = 0(X“EL) + 0(X'E;) = X“®F, = 0*(X)®E, = w*®E,(X) = 0 = w*®E, ,
Then, 0 = dw®QE, .
Denoted by [8,,68,] =w” A w*®[E,, E.],2 which is called the interior commutator of the

forms 6;and 6, .then the relation (*) can be written as the following form:

1
do = —5[91,92] + ¢

Where, ¢ :% Riw' A w/ ®E, is 2-form on P with value in the Lie algebra G which is called
curvature.

Principle fiber bundle of frames.

Definition:

Let M be n-dimensional smooth manifold, m € M .Consider the space T,,(M),Let
{e4, ..., e, }be a basis of T,,, (M), the set(m; e, ..., e;,,) is called a frame.

Denoted by BM ={(m; e4,..,e,): m € M} the set of all frames, then there exist a
surjective map I: BM — M.The subset I1-1(m) ={all frames which based at the point m},
which is called a fiber over M.

Remark:

The Lie group GL(n, R) acts freely on BM on the right by the form:
(m1 el; L] en)g = (m; gileili ""g‘ﬁnel’n) ;g = g_;

This action is freely, because,3p andpg =p = g = I;;
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(m; eq,...,e,)g9 = (m; gileil, ...,gfl"ein) = e = g,’cej = g =1,
If P,and P, are two frames then, I1(P,) = II(P, ) & 3g € GL(n,R) such that: P,g = P, ,

Where g is the transition matrix from the frame P, = (m; e, ...,e,) to the frame P, =
(m; ey, ...,en).

Definition:

Let (U,@) be a local chart in M with coordinates (x1,...,x™). We define a map
F,:MI"Y(U) — GL(n,R) by F,(p) = g, where g is the transition matrix from the canonical

2 2
frame (m;ﬁ, ""ax_n) to the frame (m; e, ..., e,).
Define a map ¢,: 1171 (U) — U X GL(n, R) by the form:

Yy(p) = ((p), Fy(p)).

We have now B(M) = (BM, M, 11, GL(n, R)) is a principle fiber bundle with base space M
and canonical projection IT and structure group GL(n,R). This principle fiber bundle is
called is a principle fiber bundle of frames.

Remark:

Let M be an n-dimension smooth manifold,m € M be any point,P = (m; ey, ..., e,,) be any
frame with based at m, then P can be identify with the linear isomorphisim p: R™® — T,,,(M)

Which defined by the form:
p(xl, ..., x™) = Xle;.
Definition:

Let B(M) = (BM,M,II, GL(n, R)) be a principle fiber bundle of frames and p: R* —
T,,(M) be a linear isomorphisim on BM, defined 1-form w with value in the space R™ by the
form:w,(X) = p~'o(I1,),(X) ; X € T,(BM).

I[I: BM — M generates (I1,),: T, (BM) — Ty (M) = T, (M).
p:R" — T, (M) and w,: T,(BM) — R™.

The 1-form w which is defined above is called mixture form.
Definition:

The r-form w €A, (P) is called a horizontal form if w(X) = 0,vX € V.
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Theorem:

In the first and the second group of the structure equation of the principle fiber bundle of
frames are given by the forms:

da)"=—a)§/\a)j;
da)}=—a)k/\a) +a)k/\a)

Fundamental theorem of tensors analysis.

The setting of tensor field t of type (r,s) on smooth manifold M equivalent to the setting
smooth functions {tijll_'_:'if} on the principle fiber bundle of frames, which are satisfies:

J1-Js Ji-Js | .k J1-Js k kj, ]s J1eds—1k s
dtll l-r tkiz...irwil - til...ir_lkwir + til...lr + -t tll lr wk
_ J1Jds ok
=Y kP
where{ t] 1-Js k} are the system of smooth functions equal to the coorsponding components

of the tensor t.

Structure equation of connection in principle fiber bundle of
frames.

Lemma:

Let (P, M,II, G) be a principle fiber bundle. Suppose that 8,and 8,are two connection
formson (P,M,Il, G), then, & = 8; — 6, is a horizontal form, this mean:

EX)=0vXeV.
Proof:

Since 6,and 6, are two connection forms, then, 6,0 A= 6,0 A= id .If G acts on P on the
right,: G — X(P) ,A(X) = X', then, A= id®A: C*(P)®G — C”(P)QRX(P),

68,0 A= 0,0 A=id means (6; —0,) o A= 10

But we know that F = C*°(P)Q®4% =V

Then,vX € V,3Y € C*(P)QG suchthat AY = X

(6, —0,)(X) = (0, —0,)(AY) = (0, —0)oAn(Y)=0,VXEV.
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The structure equation.

Suppose that (B(M), M, 11, ¢) is a principle fiber bundle of frames, and suppose that 6 is
a connection:

0} — oz)Jé = y;'.ka)k : {y;'.k} € C°°(B(M))
= 0} - a)Ji- = y}kwk
According to the first group of structure equation of principle fiber bundle of frames we have
dw' = —a)]é Awl = —9} Awl + y;'.kwk A w/
= —Q}Aa)j +yfl-k]a)"" Aw = —H}Aa)j —y[i]-k]a)wak

Where the bracket [ ] refer to alternative of the indexes iand j.

. . A
dw'=-6; ANw’ + 56]‘-,((1)1 Aok (1)

Where, (S]l:},c = —Zijk] .The equation (1) is called the first group of structure equation of
connection.

Similar to the principle fiber bundle, we can write

w = w'®e; (mixture form with respect to the canonical basis).

. . . 1 . .
dw = d(,l)l®€l' = —9; N\ w]®€i -+ E(lewf N\ (Uk®€i
dw = -0 N\ w + Q.

Where O = + %S}kwf A w*®g; is 2-form in BMwith value in R™ which is called the torsion

form of connection. on the other hand, remember the second group of structure equation of
connection in principle fiber bundle , which has the form:

1 1
dw® = —ECgca)b A w€ + ER%{)wk A w?

In the case of principle fiber bundle of frames 91‘: play the role of w® , then,

| | 1 .
do} = -6} A 6f + ER]‘-M@" Ao’ .. (2)
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orde = —%[9,9] +

The equation (2) is called the second group of structure equation of connection in principle
fiber bundle of frames, where,

1 [ 1 i k
¢ = 5:R;k{)a)k A w? and > [6,6] = 6}, A 6.
From the above disscusion, we get the following theorem:

Theorem:

The complete group of the structure equations of connection in the principle fiber bundle
of frames has the form:

1) dw=-0ANw+Q;
2) do =——[6,6] +¢.

Where, .2 = + 2 j,w/ A wk®¢g;, & = > e " A w*@E] are the torsion and curvature
forms of connection respectively.

Theorem:

The connection in the principle fiber bundle of frames induce two tensor lields, the first
tensor of type (2,1) which is called a torsion tensor of connection, and the second tensor of
type (3,1) which is called a curvature tensor of connection.

Problem:
Find V&, and VR, .
Definition:

A smooth manifold which fixed connection on its principle fiber bundle of frames is
called affine connection space.

Remark:

Let M be an n-dimensional affine connection space, 6 be a connection form. Let t be a
tensor of type (r, s) on M, according to the fundamental theorem of tensor analysis, the

setting of tensor t on M equivalent to the setting a system of functions t“={ti]11_'_:'i]:} on
BM which satisfies the equation:

1ds _ Jids ok

Where, { tijll_:'_'i]:k} are smooth fuctions which are given on BM:
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eds _ g dveds _ ieds gk dieds gk o Kaedaph L Jieds ikl
Vtgl...ir_dtél...i t;ciz...ireil tél...ir_lkgir-l_til...ir Oi' + +t;1...ir O

T
J1ed k
=ty 0"
The functions {tﬁ'"{sk} are tensors of type (r + 1,s) this mean Vtﬁ{: is a tensor of type
iy

(r + 1, s) which is called a covariant differential in the given connection and will be defined
by Vt.

Definition:
A tensor field Vit is called a covariant derivative of the tensor field t in the direction of

the vector field X, and the vector field Vy: (M) — 7(M) is called an operator of covariant
derivative in the direction of the vector field X.

Theorem:

The operator Vy has the following properties:
1) Vxf = Xf;

2) VfX'i'th = fVXt + ,gVYtr

3) Vx(ty +t;) = Vx(ty) + Vx(t2);

4) Vy(t:®t;) = Vx(t)®t, + t; ®Vy(t,).
Where X,Y e X(M) ,f,g € C* (M), t,,t,, t € T(M).

Corollary:

In the space M of affine connection defined operator V: X(M) x X(M) — X (M) which
has the following properties:

1) V(fX + gY,2) = fV(X,Z) + gV(Y, Z);
2) VIX,Y +2) =V(X,Y) + V(X,2);
3) VX, fY) = X(F)Y + fV(X,Y).

Where X,Y,Z € X(M) and f,g € C*(M).

Definition:

The operator V which has the above properties is called Kozel's operator, and we have
V(X,Y) = V,Y.

Remark:
The connection which identify with the Kozel's operator is called affine connectionor
linear connection of the manifold M .
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Theorem:

The setting of affine connection on smooth manifold is equivalent to the setting of
Kozel's operator V: X(M) x X(M) — X(M)which has the following properties:

1) fo+gyz = vat + gVYZ,
2) Vx(Y + Z) = Vx(Y) + Vx(Z);

3) VX(fY) = X(f)Y + fVx.
Where X,Y,Z € X(M) and f,g € C*(M).

Theorem:

Let M be the space of affine connection V, and_S, R are torsion and curvature tensors
respectively of this connection, then:

1) S(X,Y) =V,Y -V, X — [X,Y];
2) R(X,Y)Z = ([Vx, Vy] — Vixy))Z.

Where X,Y,Z € X(M).
Remark:

This theorem (above) explain that torsion and curvature tensors can be written in the
terms of Kozel's operator.

(G- Structure of the first order on smooth manifold.

We call to, B, = (P, M, 114, G,) and B, = (P,, M, I1,, G,) are two principle fiber bundles
on a smooth manifold M.A homomorphisim from 3, into 3, is a pair (f, p), where f: P, —
P, is a smooth map and p: G; — G, is a homomorphisim of Lie groups such that:

1) The following diagram is commutative :

Plﬂ[_—fpz

W

M
2) f(pg) = f(p)p(g)

Remark:

In particular, if (P, f) is a sub manifold of P, and (G4, p) is a Lie sub group of Lie group
G,then, B; = (P, M, 114, G,) is called a sub fiber bundle of 3, = (P,, M, I1,, G,).

Definition:
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The sub fiber bundle B3, = (P, M, 11, G;) is called a reduction of the fiber bundle 8, =
(P,, M, I1,, G,) by asub group (G4, p).

Remark:

For us, the most interest is the case, where 3, = (BM, M, 1, GL(n, R)) is a principle fiber
bundle of frames and B, = (P, M, I, G) its sub fiber bundle , such that:f: P ¢ BM is the
inclusion map, IT = |, and G is a linear group. This means Lie sub group of the general
linear group with respect to the inclusion p: G € GL(n, R).

Example:
If G = 0(n,R) c GL(n,R),and
P = {all orthogonal frames of smooth manifold M} € BM={all frames of M}.
In this case B; = (P, M, TI, G) will be sub fiber bundle.
Definition:

The sub fiber bundle (P, M, 1, G) which is defined as above (this means reduction of the
principle fiber bundle of frames over the smooth manifold M by the given subgroup) is
called G-structure of the first order over M.
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