Differential Topology

<u>PART(1)</u>

Smooth manifold.

1-smooth structure and smooth manifold.

Definition:

Let $U, V \subseteq \mathbb{R}^m$ are open subset. A map $f: U \to V$ is called a differentiable of class c^r , if the functions $f_i = f_i(x^1, \dots x^m)$; $i = 1, \dots n$ have the partial derivative up to order r.

i.e. $f(x^1, \dots, x^m) = f_1 \mathbb{1}(x^1, \dots, x^m), \dots f_n(x^1, \dots, x^m)$ have $\frac{\partial^r f_k}{\partial^{r_1} x_1, \dots \partial^{r_s} x_m}$, $r_1 + \dots + r_s = r$.

Definition:

If f is differentiable and bijective and f^{-1} differentiable, then we say that f is diffeomorphisim U on to V and then U and V are said to be diffeomorphic.

Remark:

We will assume that $r = \infty$ and in this case, we say that f is a smooth.

Definition:

Suppose that M is a housdorff space, an open chart of dimension n in M

Is a pair (U, φ) , where U is an open set in M and $\varphi: U \to \varphi(U) \subseteq \mathbb{R}^n$ is a homeomorphisim on open sub set of \mathbb{R}^n for $\in U$, $\varphi(p) = (x^1, ..., x^n)$ are said to be a local coordinants of the point $p \in U$.

Definition:

Two charts (U, φ) , (V, ψ) , are said to be a smooth connection, if the map :

$$\psi o \varphi^{-1} \colon \phi(U \cap V) \longrightarrow \psi(U \cap V)$$

is diffeomorphisim in Euclidean space.

Definition:

A family of n-dimensional charts on M $\{(U_i, \varphi_i)\}$ is called an atlas if

1) All charts are to be pairwise smooth connection;

 $2)\cup_{i\in I} U_i = M.$

Definition:

An atlas on M is said to be a maximal, if every chart on M which is a smooth connection with each chart of this atlas, then its belong to this atlas. i.e. atlas in M is maximal if its no contained in any other atlas.

Definition:

A maximal atlas is called a smooth structure .

Definition:

A space M with smooth structure is called a smooth manifold.

Definition:

Two smooth structure on M are said to be equivalent, if each two charts are smooth connection.

Example:(about non-equivelent smooth structure)

Suppose $M=\mathbb{R}$,

$$(U, arphi); U = \mathbb{R}, arphi = id;$$

 $(V, arphi); V = \mathbb{R}, \psi = x^3$

Exampls:(about smooth manifolds)

1) M= \mathbb{R}^n Euclidean space is an n dimensional smooth manifold.

A maximal atlas consist of one chart $(\mathbb{R}^n, 1_{\mathbb{R}^n})$; where $1_{\mathbb{R}^n} : \mathbb{R}^n \to \mathbb{R}^n$ is the identity map.

2) Every finite dimensional linear space is a smooth manifold.

Suppose that V is an n dimensional linear space;

Let $\alpha = (e_1, ..., e_n)$ be a basis for V. consider a map :

$$\varphi_{\alpha}: V \longrightarrow \mathbb{R}^{n}; \varphi_{\alpha}(x) = (x^{1}, ..., x^{n})$$

Where $(x^1, ..., x^n)$ are the coordenentes of the vector $x \in V$ in the basis α . Clearly, φ_{α} is bijective and then is a homeomorphism.

If $\beta = (\epsilon_1, ..., \epsilon_n)$ is an another basis in V and $\varphi_{\beta}: V \to \mathbb{R}^n$ given by $\varphi_{\beta}(x) = (x^1, ..., x^n)$; $x^1, ..., x^n$ are the coordenentes of the vector $x \in V$ in the basis β

Now, $\varphi_{\alpha\beta} = \varphi_{\beta} o \varphi_{\alpha} \colon \mathbb{R}^n \to \mathbb{R}^n$ gives the equation :

$$Y^{i} = C_{i}^{i} X^{j}; i = 1, ..., n,$$

where (C_i^i) is the transition matrix from the basis β to the basis α .

Clearly that $\varphi_{\alpha\beta}$ is diffeomorphisim .Therefore, every basis α in V generats a chart (V, φ_{α}) in V will be atlas in V and then defind a smooth structure. Therefore, V is n dimensional smooth manifold.

Remark:

Suppose that M and N are smooth manifolds of dimensions m and n respectively with the smooth structures :

 $\{(U_{\alpha}, \varphi_{\alpha})\}_{\alpha \in A} \text{ and } \{(V_{\beta}, \psi_{\beta})\}_{\beta \in B}.$

Then, the set $M \times N$ has smooth structures which is generated by the family $\{(W_{\alpha\beta}, X_{\alpha\beta})\}_{\alpha \in A, \beta \in B}$.

Where $W_{\alpha\beta} = U_{\alpha} \times V_{\beta}$, $X_{\alpha\beta} = \varphi_{\alpha} \times \psi_{\beta}$.

The smooth manifold $M \times N$ will be of dimension n+m which is called a product manifold of M and N.

Clearly, this structure can be extended for any number of manifolds.

For example, the product of any n copy of S^1 is n dimensional smooth manifold which is denoted by T^n and called n dimensional torus.

2-Algebra of smooth functions on smooth manifold.

Definition:

Let M^n be a smooth manifold. A map $f: M \to \mathbb{R}$ is called a smooth function on M, if for any chart (U, φ) on M, the map $f \circ \varphi^{-1} \varphi(U) \to \mathbb{R}$ is smooth map of Euclidean space. Denote by $C^{\infty}(M)$ to the set of all smooth functions on M.

The set $C^{\infty}(M)$ will be algebra over field \mathbb{R} with operations:

1) (f + g)(p) = f(p) + g(p);

- 2) $(\lambda f)(p) = \lambda f(P);$
- 3) (f.g)(p) = f(p).g(p).

Where $p \in M$, $f, g \in C^{\infty}(M), \lambda \in \mathbb{R}$.

Algebra $C^{\infty}(M)$ is called an algebra of smooth functions on the manifold M.

<u>3-Vector field on smooth manifold .</u>

Definition:

Suppose that $C^{\infty}(M)$ is algebra of smooth functions on M. A linear operator $X: C^{\infty}(M) \to C^{\infty}(M)$ is called a differentiation of algebra $C^{\infty}(M)$

If X(f,g) = X(f), g + f, X(g); $f,g \in C^{\infty}(M)$.By the another way the map $X: C^{\infty}(M) \to C^{\infty}(M)$ is called a differentiation of algebra $C^{\infty}(M)$ if :

1) X(f + g) = X(f) + X(g);

2) $X(\lambda f) = \lambda X(f);$ 3) X(f.g) = X(f).g + f.X(g).

Where , $g \in C^{\infty}(M)$, $\lambda \in \mathbb{R}$.

Clearly that the set X(M) of all differentiations of algebra $C^{\infty}(M)$ represent a module over a ring $C^{\infty}(M)$ with operations:

1) (X + Y)(f) = X(f) + Y(f);2) (gX)(f) = g.X(f).Where $X, Y \in X(M)$, $f, g \in C^{\infty}(M).$

Definition:

A differentiation X(M) of algebra $C^{\infty}(M)$ is called a smooth vector field on a smooth manifold $M.C^{\infty}(M)$ -module X(M) is called a module of smooth vector fields on manifold M.

Proposition:

Let M be a smooth manifold, $X \in X(M)$, X(C) = 0; C is a constant.

Theorem:

Let (U, φ) be a local chart with coordinates $\{x^1, ..., x^n\}$ on a smooth manifold M ,then the module X(U) generated by $\{\frac{\partial}{x^1}, ..., \frac{\partial}{\partial x^n}\}$, in particular, $\forall X \in X(M)$ then $X = \sum_{i=1}^n X^i \frac{\partial}{\partial x^i}$.

Definition:

The basis $\frac{\partial}{\partial x^1}$, ..., $\frac{\partial}{\partial x^n}$ of the module X(U) is called a canonical basis.

4- Tangent vectors and tangent space

Definition:

Let M be a smooth manifold and let $p \in M$. A tangent vector X_p at p is a map

$$X_p: \mathcal{C}^\infty (U) \to \mathbb{R}$$

Where U is an open neighborhood of p, such that:

1) $X_p(\lambda f + \mu g) = \lambda X_p(f) + \mu X_p(g);$ 2) $X_p(f.g) = X_P(f).g(p) + f(p)X_p(g);$

for each $\lambda, \mu \in \mathbb{R}$, $f, g \in C^{\infty}(U)$

The set of all tangent vectors at p is called the tangent space M at p and denoted by $T_p(M)$

Note:

The tangent space $T_p(M)$ carries natural operations + and . turning it in to real vector space. i.e. For all $X_p, Y_p \in T_p(M)$ $f \in C^{\infty}(M), \lambda \in \mathbb{R}$,

- 1) $(X_p + Y_p)(f) = X_p(f) + Y_p(f)$
- 2) $(\lambda X_p)(f) = \lambda X_p(f).$

Theorem:

The giving of vector field $X \in X(M)$ on n – dimension of smooth manifold M equivalent to giving family of tangent vectors $\{X_p \in T_p(M)\}$ on M such that: in each local chart (U, φ) with coordinates $\{x^1, ..., x^n\}$, the functions $X^i(p) = X_p(x^i)$ belong to algebra $C^{\infty}(U)$.

5- Lie algebra of vector fields on a smooth manifold.

Let M be a smooth manifold, X(M) be module of it is vector fields, $X, Y \in X(M)$, its easy to check that $X \circ Y$ does not be vector field. if $g \in C^{\infty}(M)$, then:

$$\begin{aligned} X \circ Y(f.g) &= X(Y(f.g)) \\ &= X(Y(f).g + f.y(g)) \\ &= X(Y(f).g + Y(f).X(g) + X(f).Y(g) + f.X(Y(g))) \\ &= X \circ Y(f).g + Y(f).X(g) + X(f).Y(g) + f.X \circ Y(g) \end{aligned}$$

In other hand if we change the vector fields *X*, *Y* we get :

$$Y \circ X(f.g) = Y \circ X(f).g + X(f).Y(g) + Y(f).X(g) + f.(Y \circ X)(g)$$

Now:

$$(X \circ Y - Y \circ X)(f.g) = (X \circ Y - Y \circ X)(f).g + f.(X \circ Y - Y \circ X)(g),$$

This mean that $(X \circ Y - Y \circ X) \in X(M)$. Denoted by $[X, Y] = (X \circ Y - Y \circ X)$

Definition:

The operation $\circ: X(M) \times X(M) \longrightarrow X(M)$ which is defined by o(X, Y) = XoY - YoX = [X, Y] is called a commutator of X and Y and the symbole [X, Y] is called a commutator or Lie bracket.

Proposition:

prove that :

- 1) [X,Y] = -[Y,X];
- 2) [[X,Y],Z] + [[Y,Z,]X] + [[Z,X],Y] = 0.

Definition:

The pair (X(M), o) is called a Lie algebra of smooth vector field of smooth manifold M. **Proposition**:

The commutator operation is $\operatorname{not} \mathcal{C}^{\infty}(M)$ – linear map.

<u>Remark:</u>

We can write the commutator of vector fields *X* and *Y* in the local chart (U, φ) with coordinates $\{x^1, ..., x^n\}$ as follows :

$$X = X^{i} \frac{\partial}{\partial x^{i}} \quad ; Y = Y^{j} \frac{\partial}{\partial x^{j}} \quad \text{, then,}$$
$$[X, Y]^{i} = [X, Y](x^{i}) = X(Y(x^{i})) - Y(X(x^{i})) = X(Y^{i}) - Y(X^{i}) = \frac{\partial Y^{i}}{\partial x^{i}} X^{j} - \frac{\partial X^{i}}{\partial x^{j}} Y^{j}$$

6-Tensor algebra of a smooth manifold.

Let V be a module over a commutative and associative ring K with identity or (K - module), V^* be dual module of K- linear functions on V with value in K. we have $V \cong V^{**} = (V^*)^*$ by the map $\tau: V \to V^{**}$ which is defined by $\tau(x)(w) = w(x)$; $x \in V$, $w \in V^*$. The module V is called a reflexive if the map τ is isomorphisim.

Definition:

Let V be a reflexive K-module . consider a K-module $\tau_r^s(V)$, the set of all maps $t: \underbrace{V \times V \times ... \times V}_{r-times} \times \underbrace{V^* \times V^* \times ... \times V^*}_{s-times} \to K$, which are K-linear in every argument. It is element are called r-times covariante and s-times contravariants tensors of module V .For short are called tensors of type (r,s).

Definition:

Define an operation $\otimes: \tau_{r_1}^{s_1}(V) \times \tau_{r_2}^{s_2}(V) \longrightarrow \tau_{r_{1+2}}^{s_{1+2}}(V)$ as follows:

If $t_1 \in \tau_{r_1}^{s_1}(V)$ and $t_2 \in \tau_{r_2}^{s_2}(V)$, then $t_1 \otimes t_2 \in \tau_{r_{1+2}}^{s_{1+2}}(V)$ such that :

 $\begin{aligned} &(t_1 \otimes t_2)(u_1, \dots, u_{r_1 + r_2}, v^1, \dots, v^{s_1 + s_2}) = \\ &t_1 \; (u_1, \dots u_{r_1}, v^1, \dots, v^{s_1}) t_2(u_{r_1 + 1}, \dots, u_{r_1 + r_2}, v^{s_1 + 1}, \dots, v^{s_1 + s_2}) \;, \text{ where } u_1, \dots, u_{r_1 + r_2} \in V \\ &\text{ and } v^1, \dots, v^{s_1 + s_2} \in V^* \end{aligned}$

Theorem:

The operation \otimes has the following properties :

1) $t_1 \otimes (t_2 + t_3) = t_1 \otimes t_2 + t_1 \otimes t_3;$ 2) $(t_1 + t_2) \otimes t_3 = t_1 \otimes t_3 + t_2 \otimes t_3;$ 3) $t_1 \otimes (t_2 \otimes t_3) = (t_1 \otimes t_2) \otimes t_3.$

The operation \otimes which has the above properties , is called a tensor product .

The K-module $\tau(V) \cong \bigoplus_{r=0}^{\infty} \bigoplus_{s=0}^{\infty} \tau_r^s(V)$ with tensor product is called a tensor algebra.

Remark:

From the reflexivity of V, we have:

 $\tau_0^1(V) = \{t: V^* \longrightarrow K\} = V^{**} = V \ , \ \tau_1^0(V) = \{t: V \longrightarrow K\} = V^*.$

Definition:

From the above definition we get that the sub modules $\tau_*(V) = \bigoplus_{r=0}^{\infty} \tau_r^0(V)$ and $\tau^*(V) = \bigoplus_{s=0}^{\infty} \tau_0^s(V)$ represente sub algebras of the tensor algebra $\tau(V)$ and thy called covariant and contravariante tensor algebra of V respectively.

Remark:

If V is a finite linear space over a field K and $\{e_1, \dots, e_n\}$ is any basis of V, $\{e^1, \dots, e^n\}$ is a dual basis, then,

$$e^{i}(e_{j}) = \delta^{i}_{j} = \begin{cases} 1 & If \quad i = j \\ 0 & If \quad i \neq j \end{cases}, \text{ then,}$$

The tensor of the forms :

$$e_{i_1} \otimes ... \otimes e_{i_r} \otimes e^{j_1} \otimes ... \otimes e^{j_s};$$

 $i_1, ..., i_r$, $j_1, ..., j_r = 1, ..., n$, are basis of linear space $\tau_r^s(V)$. In particular, we have :

$$\dim \tau_r^s(V) = n^{r+s}$$

Remark:

The coordinates $\{t_{i_1,\dots,i_r}^{j_1,\dots,j_s}\}$ of the tensor $t \in \tau_r^s(V)$ in this basis are equal to it is components . i.e.,

$$t_{i_1,\ldots,i_r}^{j_1,\ldots,j_s} = t(e_{i_1},\ldots,e_{i_r},e^{j_1},\ldots,e^{j_s}).$$

Definition:

Let M be *n*-dimensional smooth manifold, $p \in M$, then, the tensor algebra $\tau(T_P(M))$ denoted by $\tau_p(M)$ and is called a tensor algebra of the manifold M at the point p. In the other hand $\tau(X(M))$ denoted by $\tau(M)$ and is called a tensor algebra of manifold M. The element of the tensor algebra are called a tensor fields.

Definition:

A dual of the module X(M) is called a module of differential 1-form on manifold M, and is denoted by $X^*(M)$;

$$X^*(M) = \{t: X(M) \longrightarrow \mathbb{R}\}.$$

Theorem:

The giving of tensor $t \in \tau_r^s(M)$ on smooth manifold M equivalent to the giving family of tensors{ $t_p \in \tau_r^s(M)$; $p \in M$ } such that, in each local chart (U, φ) with coordinates { $x^1, ..., x^n$ } on M, the functions,

$$t_{i_1,\dots,i_r}^{j_1,\dots,j_s}(p) = t(\frac{\partial}{\partial x^{i_1}}|_p,\dots,\frac{\partial}{\partial x^{i_r}}|_p,w_p^{j_1},\dots,w_p^{j_s}) \ .$$

Where $\{w_p^1, ..., w_p^n\}$ is the dual basis of the canonical basis of the space $T_p(M)$ at the point $\in M$.

7-Grassman algebra of smooth manifold.

Operator of exterior differentiation.

Let $T_*(V) = \bigoplus_{r=0}^{\infty} \tau_r^0(V)$ be the covariant tensor algebra of reflexive K-module V. In the module $\tau_r^0(V)$ acts symmetric group s_r of order r (permetation group) as the following:

If module $t \in \tau_r^0(V), \sigma \in s_r$, then $(\sigma t)(x_1, \dots, x_r) = t(x_{\sigma(1)}, \dots, x_{\sigma(r)})$.

Definition:

The tensor $t \in \tau_r^0(V)$ is called a symmetric, if $\forall \sigma \in s_r$, then $\sigma t = t$ and the tensor $t \in \tau_r^0(V)$ is called antisymmetric if for each $\sigma \in s_r$, then $\sigma t = \mathcal{E}(\sigma)$ where $\mathcal{E}(\sigma)$ is the sign of permetation which equal to 1 for even permetation and -1 for odd permetation:

$$\mathcal{E}(\sigma) = \begin{cases} 1 & if \sigma even \\ -1 & if \sigma odd \end{cases}$$

Note:

Clearly that the symmetric and antisymmetric tensors are submodules of the module $\tau_r^0(V)$ and we will denote them by $S_r(V)$ and $\wedge_r(V)$ respectively.

Definition:

Define endomorphisims Sym and Alt of $\tau_r^0(V)$ as follows:

$$Sym(t) = \frac{1}{r!} \sum_{\sigma \in S_r} \sigma t$$
; $Alt = \frac{1}{r!} \sum_{\sigma \in S_r} \varepsilon(\sigma) t$.

Which are projections ;on modules $S_r(V)$ and $\wedge_r(V)$ respectively , and are called symmetric and alterative operators .Define an operation as follows:

$$\wedge : \wedge_r (V) \times \wedge_S (V) \longrightarrow \wedge_{r+s} (V) .$$

If $w_1 \in \Lambda_r(V)$, $w_2 \in \Lambda_s(V)$, then $w_1 \wedge w_2 \in \Lambda_{r+s}(V)$ which is defined by the form:

$$w_1 \wedge w_2 = \frac{(r+s)!}{r! \, s!} Alt(w_1 \otimes w_2) \, .$$

Proposition:

Prove that :

- 1) $(w_1 + w_2) \wedge w_3 = w_1 \wedge w_3 + w_2 \wedge w_3;$
- 2) $w_1 \wedge (w_2 + w_3) = w_1 \wedge w_2 + w_1 \wedge w_3$;

3) $w_1 \wedge (w_2 \wedge w_3) = (w_1 \wedge w_2) \wedge w_3$.

Definition:

The operator \wedge is called an exterior product .

Let \wedge (V) = $\bigoplus_{r=0}^{\infty} \wedge_r(V)$, where $\wedge_0(V) = K$, and $\wedge_1(V) = V^*$.

 \wedge (*V*) with operation \wedge is called an exterior algebra .

Remark:

If $\wedge_r(V)$, then, $w: \underbrace{V \times ... \times V \longrightarrow K}_{r-times}$, which is called a form of degree r or r-form.

Definition:

Let V be an n-dimensional linear space over a field K, $\{e_1, \dots, e_n\}$ be a basis of V, then the r-forms:

 $e_{i_1} \wedge ... \wedge e_{i_r}$ are basis of the module $\wedge_r (V)$. The coordinates $\{w_{i_1,...,i_r}\}$ of r-form $w \in \wedge_r (V)$, in this basis, considens with it is components, i.e.

$$w_{i_1,...,i_r} = w(e_{i_1},...,e_{i_r})$$

Clearly that dim \wedge_r (V) = $\binom{n}{r} = \frac{n!}{r!(n-r)!}$.

Definition:

Suppose that M is smooth manifold. Exterior algebra $\wedge (X(M))$ denoted by $\wedge (M)$ which is called a Grassman algebra of smooth manifold M. It is elements are called differential form.

Theorem:

Suppose that M is a smooth manifold, then there exist a unique mapping:

$$d: \wedge (M) \rightarrow \wedge (M)$$

With the following properties:

1) $d(\wedge_r (M) \subset \wedge_{r+1} (M);$ 2) df(X) = X(f);3) $d \circ d = 0;$

4)
$$d(w_1 \wedge w_2) = dw_1 \wedge w_2 + (-1)^r w_1 \wedge dw_2$$
,

Where $w_1 \in \Lambda_r(M)$, $w_2 \in \Lambda(M)$.

Definition:

The operator d which has the above properties is called the operator exterior differentiation .

Proposition:

Suppose that M is a smooth manifold , (U, φ) is a local chart with coordinates $\{x_1, ..., x_n\}$ on M and $\{\frac{\partial}{\partial x_1}, ..., \frac{\partial}{\partial x_n}\}$ is the canonical basis for the module X(U), then the differential 1-forms $\{dx_1, ..., dx_n\}$ is the dual basis of the canonical basis of X(U)

8-<u>Smooth map, differential of smooth map.</u>

Proposition:

Suppose that M and N are smooth manifolds, a map $\phi: M \to N$ is called a smooth, if $\forall f \in C^{\infty}(N)$, then $f \circ \phi \in C^{\infty}(M)$.

Remark:

The above definition equivalent to the following:

A map $\phi: M \to N$ is called a smooth, if for each chart (U, φ) on M and (V, ψ) on N with coordinates $\{x_1, \dots, x_n\}$ and $\{y_1, \dots, y_n\}$ respectively, then, the map :

 $\psi o \phi o \varphi^{-1} \colon \varphi(U) \longrightarrow \psi(V)$

Is a smooth of Eucledian space.

Note:

If the smooth map ϕ is the bijective such that the map ϕ^{-1} is smooth, then the map ϕ is called a diffeomorphisim.

Definition:

Let $p \in M$, define a map:

$$(\phi_*)_p: T_p(M) \to T_{\phi(p)}(N)$$
 as follows:

Let $\in T_p(M)$, $(\phi_*)_p(\xi)(f) = \xi(fo\phi)$; $f \in C^{\infty}(N)$. The map $(\phi_*)_p$ is called a differential map of the smooth map ϕ . Note that $(\phi_*)_p(\xi) \in T_{\phi(p)}(N)$.

9- ϕ – connection of vector fields.

Definition:

Let $\phi: M \to N$ be a smooth map, the vector fields $X \in X(M)$, $Y \in X(N)$ is called ϕ – connection, if $\forall f \in C^{\infty}(N)$, then $X(fo\phi) = Y(f)o\phi$.

Theorem:

The vector field X and Y are ϕ – connection iff $\forall p \in M$, then $(\phi_*)_p X_p = Y_{\phi(P)}$.

Remark:

We will dente by $Y = \phi_* X$.

Definition:

The vector field $Y = \phi_* X$ is called a dragging of the vector field X with respect to the map .

<u>H.W.:</u>

If $Y_1 = \phi_* X_1$ and $Y_2 = \phi_* X_2$, then, Prove that: $[Y_1, Y_2] = \phi_* [X_1, X_2]$.

Remark:

By the same way for the vector field $\in X(M)$, we can define the dragging $\phi_* X$, where $\phi_*: X(M) \to X(N)$, then $\phi_*^{-1} = \phi^*: X(N) \to X(M)$ which is called an anti-dragging of the vector field.

10-Distribution and co distribution.

Definition:

A sub module D of the module X(M) is called a distribution on M. The distribution D is called r-dimensional, if there exist atlas on M such that each chart (U, φ) , then,

$$D|U = \{X|D : X \in D\}$$

Is a module of r-dimension.

Remark:

The giving of r-dimensional distribution on M is equivalent to the giving the family $\{D_P \subset T_P(M): dim D_p = r\}$.

Definition:

A sub module C of the module $X^*(M)$ is called a codistribution.

Definition:

Suppose that D is the distribution on M. The sub module :

$$C_D = \{ w \in \wedge_1 (M) : w(X) = 0 , \forall X \in D \}.$$

Is called a codistribution associated with the distribution .

Theorem:

If M is an n-dimensional smooth manifold, and dimD = r, then, $dimC_D = n - r$.

Proof:

Suppose that $\{X_1, ..., X_r\}$ is a local basis for the distribution D. Compelet this basis to the basis $\{X_1, ..., X_n\}$ for the module X(M). Let $\{w^1, ..., w^n\}$ be a dual basis. Let $w \in X^*(M)$, then,

 $w = \sum_{i=1}^{n} a_i w^i$, where $a_i = w(X_i)$. We have :

 $w \in C_D$ iff w(X) = 0, $\forall X \in D$ iff $a_k = w(X_k) = 0$, k = 1, ..., r.

Then we get $= a_{r+1}w^{r+1} + \cdots + a_nw^n$, since the form $\{w^{r+1}, \dots, w^n\}$ are linearly independent, then are will be basis of the module C_D .

Therefore, $\dim C_D = n - r$.

11-Sub manifold of smooth manifold.

Definition:

Suppose that $\phi: N \to M$ is a smooth function, the rank of ϕ at $p \in N$ is the rank of the $(\phi_*)_p: T_p(N) \to T_{\phi(p)}(M)$. The dimension of range $(\phi_*)_p$ is called the rank of $(\phi_*)_p$.

Definition:

A smooth map $\phi: N \to M$ is called an immersion if it is rank equal to the dimension of N.

Definition:

Suppose that $\phi: N \to M$ is a smooth map, if ϕ is an immersion, then we say that the pair (N, ϕ) is an immbeding sub manifold. In this case, if ϕ is an injective, then the pair (N, ϕ)

Is called a sub manifold of M.

If (N, ϕ) is a sub manifold of M, such that the map ϕ is an open, then we say that (N, ϕ) is an inclusion sub manifold of M and ϕ is called an inclusion map.

Example:

Let $N = I \subset \mathbb{R}$, $\alpha_i: I \to M$ is a smooth curve ; i=1,2,3 , which are defined as following diagrams:

- 1) (I, α_1) is immbeding sub manifold, but not sub manifold;
- 2) (I, α_2) is sub manifold, but not inclusion sub manifold;
- 3) (I, α_3) is inclusion sub manifold.

<u>PART(2):</u>

<u>Lie group and Lie algebra .</u>

1-Lie group:

Definition:

A Lie group is a group G which is al so smooth manifold such that, the map:

$$\phi: G \times G \longrightarrow G$$

Which is defined by:

$$\phi(x,y) = x.y^{-1}$$

Is a smooth $\forall x, y \in G$.

Proposition:

Suppose that G is a Lie group, then an operation $\alpha: G \to G$ and $\alpha(x) = x^{-1}$ is a smooth.

Proof:

The map $\alpha: G \to G$ can be written as the form:

$$x : \stackrel{i_e}{\longrightarrow} (e, x) \stackrel{\varphi}{\longrightarrow} e \cdot x^{-1} = x^{-1}$$

Where *e* is the identity element of G. The map $\alpha = \varphi o i_e$ is a smooth, since i_e and φ are smooth.

Proposition:

The map $\mu: G \times G \longrightarrow G$, where $\mu(x, y) = x \cdot y$ is a smooth.

Proof :(H.W).

Examples:

1) The space $\mathbb{R}^n = \{(x_1, ..., x_n) : x \in \mathbb{R}\}$ is a Lie group with respect to the operation +.

Solution:

Let $x = (x_i)$, $y = (y_i) \in \mathbb{R}^n$.

 $(x_i).(y_i) = x_i + y_i$, and $(x_i)^{-1} = -x_i$, then $(x, y) = x.y^{-1} = x_i - y_i$.

Therefore, the map φ gives a smooth maps $u_i = x_i - y_i$, i = 1, ..., n.

Hence, φ is a smooth map which means that \mathbb{R}^n is a Lie group.

2) $\mathbb{C}^* = \{z \in \mathbb{C} ; z \neq 0\}$, is a Lie group with respect to the complex product operation.

Solution:

Let
$$z_1 = x_1 + iy_1$$
, $z_2 = x_2 + iy_2$; $z = x + iy \in \mathbb{C}$, then,
 $z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$, $z^{-1} = \frac{x - iy}{x^2 + y^2}$.
 $\varphi(z_1, z_2) = x_1 + iy_1 \frac{x_2 - iy_2}{x_2^2 - y_2^2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{-x_1 y_2 + y_1 x_2}{x_2^2 + y_2^2}$,

The map $\pmb{\varphi}$ gives a smooth functions ,

$$u_1 = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2}$$
, $u_2 = \frac{-x_1 y_2 + y_1 x_2}{x_2^2 + y_2^2}$

3) Let G_1 and G_2 be a Lie groups, then the smooth manifold:

$$G_1 \times G_2 = \{(g_1, g_2) : g_1 \in G_1 \land g_2 \in G_2\}$$

Is a Lie group with respect to components of groups operation:

$$(g_1, g_2).(h_1, h_2) = (g_1h_1, g_2h_2);$$

 $(g_1, g_2)^{-1} = (g_1^{-1}, g_2^{-1}).$

<u>Karatan's theorem :</u>

Suppose that G is a Lie group, $A \subset G$ is a closed sub group of , then A is a Lie group .

4) Let
$$S^1 = \{z \in \mathbb{C}^* : |z| = 1\}$$
, $(S^1 \subset \mathbb{C}^*)$

Solution:

If
$$z_1, z_2 \in S^1 \implies |z_1, z_2| = |z_1|, |z_2| = (1)(1) = 1$$
, thus $z_1, z_2 \in S^1$
If $z \in S^1 \implies |z^{-1}| = \frac{1}{|z|} = \frac{1}{1} = 1$, thus $z^{-1} \in S^1$,

Therefore, S^1 is a sub group of \mathbb{C}^* .

Let $\{z_n\}$ be a sequence in S^1 and $\lim_{n\to\infty} z_n = z$,

So
$$|z| = \left| \lim_{n \to \infty} z_n \right| = \lim_{n \to \infty} |z_n| = \lim_{n \to \infty} 1 = 1.$$

Thus, $z \in S^1$, therefore S^1 is closed.

Hence, by Karatan's theorem, we get that S^1 is a Lie group.

5) General linear group.

 $\operatorname{GL}(\mathbf{n},\mathbb{R}) = \{A = (a_{ij}) \in M_{n,n} : detA \neq 0\}.$

Solution:

Clearly that $GL(n, \mathbb{R})$ is open sub set in $M_{n,n} \cong (\mathbb{R}^n)^2$, then, $GL(n, \mathbb{R})$ is a smooth manifold and group.

$$\varphi: GL(n, \mathbb{R}) \times GL(n, \mathbb{R}) \longrightarrow GL(n, \mathbb{R})$$
$$\varphi(A, B) = A \cdot B^{-1} = C = (c_{ij})$$
$$c_{ij} = \sum_{k=1}^{n} a_{ik} (B_{kj})^{-1} = \sum_{k=1}^{n} a_{ik} \frac{(-1)^{k+j} \Delta_{jk}}{det B} = \sum_{k=1}^{n} \frac{(-1)^{k+j} a_{ik} \Delta_{jk}}{det B}$$

Where Δ_{jk} is the complement of B_{kj} ,

Clearly that c_{ij} are smooth functions, therefore, φ is a smooth.

Hence, $GL(n, \mathbb{R})$ is a Lie group.

6) Orthogonal group of order n.

 $GL(n,\mathbb{R}):A^{-1}=A^T\}O(n,\mathbb{R})=\{A\in$

Then, by Karatan's theorem, $O(n, \mathbb{R})$ is a Lie group.

- 7) Unimodule group $SL(n, \mathbb{R}) = \{A \in GL(n, \mathbb{R}) : det A = 1\}$;
- 8) Spicial orthogonal group $SoL(n, \mathbb{R}) = O(n, \mathbb{R}) \cap SL(n, \mathbb{R})$;
- 9) Complex general linear group $GL(n, \mathbb{C}) = \{C = (c_{ij}): c_{ij} \in \mathbb{C} ; detC \neq 0\}$;
- 10) Complex orthogonal group $(n, \mathbb{C}) = \{C \in GL(n, \mathbb{C}): C^{-1} = C^T\};\$
- 11) Complex unimodule group $SL(n, \mathbb{C}) = \{C \in GL(n, \mathbb{C}) : detC = 1\}$;
- 12) Complex orthogonal unimodule group $SoL(n, \mathbb{C}) = O(n, \mathbb{C}) \cap SL(n, \mathbb{C})$;
- 13) Unitary group $(n) = \{C \in GL(n, \mathbb{C}): C^{-1} = C^{-T}\}.$

<u>Realization of general complex group.</u>

 $\mathrm{GL}(\mathbf{n},\mathbb{C})^{\mathbb{R}} = \{A \in M_{2n,2n} : A \circ J = J \circ A\}.$

Where $J = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix}$, it is easy to check that $J^2 = -I_{2n}$,

$$J^{2} = J \cdot J = \begin{pmatrix} 0 & -I_{n} \\ I_{n} & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -I_{n} \\ I_{n} & 0 \end{pmatrix} = \begin{pmatrix} -I_{2n} & 0 \\ 0 & -I_{2n} \end{pmatrix} \cdot$$

Let \in GL(n, \mathbb{C})^{\mathbb{R}}; $A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix}$, then,

 $A \circ J = J \circ A \Longrightarrow \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \circ \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix} = \begin{pmatrix} 0 & -I_n \\ I_n & 0 \end{pmatrix} \circ \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \Longrightarrow A_2 = -A_3, A_1 = A_4.$ Therefore, we get $= \begin{pmatrix} A_1 & A_2 \\ -A_2 & A_1 \end{pmatrix}$.

If $C = A + \sqrt{-1} B$ then, $= \begin{pmatrix} A & -B \\ B & A \end{pmatrix}$.

 $GL(n, \mathbb{C})^{\mathbb{R}} \subset GL(2n, \mathbb{R})$, closed sub group, and then by Karatan's theorem it will be Lie group.

Proposition:

 $GL(n,\mathbb{C})\cong \mathrm{GL}(n,\mathbb{C})^{\mathbb{R}}$.

Solution:

Define $\varphi: GL(n, \mathbb{C}) \to GL(n, \mathbb{C})^{\mathbb{R}}$ as :

If $= (c_{ij}) \in GL(n, \mathbb{C})$, where $(c_{ij}) = \alpha_{ij} + \sqrt{-1} \beta_{ij}$,

Consider matrices $A = (\alpha_{IJ})$ and $B = (\beta_{ij}) \in GL(n, \mathbb{C})^{\mathbb{R}}$,

And $C = (A + \sqrt{-1}B) \in GL(n, \mathbb{C})$, then $\varphi(A + \sqrt{-1}B) = \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \in GL(n, \mathbb{C})^{\mathbb{R}}$.

Prove that φ is an isomorphisim .

<u>Semi – direct product of Lie grops.</u>

Let $G = GL(n, \mathbb{R})$ and $H = \mathbb{R}^n$ are be Lie groups .we know that $M = G \times H$ has Lie group structure, this Lie group is the direct product of Lie groups.But there is another Lie group structure :

Let $(A, X), (B, Y) \in GL(n, \mathbb{R}) \times \mathbb{R}^n$, define the operation * by:

(A, X) * (B, Y) = (AB, AY + X) and $(A, X)^{-1} = (A^{-1}, -A^{-1}X)$.

Directly, from this operation we can prove that $M = G \times H$ is a group (check).

Define $\varphi: M \times M \longrightarrow M$ by:

$$\varphi((A, X), (B, Y)) = (A, X) * (B, Y)^{-1} = (A, X) * (B^{-1}, -B^{-1}Y) = (AB^{-1}, -AB^{-1}Y + X).$$

Then we get that φ is a smooth map .Threfore, $GL(n, \mathbb{R}) \rtimes \mathbb{R}^n$ is a Lie group, and is called a semi- direct product of Lie groups $GL(n, \mathbb{R})$ and \mathbb{R}^n .

2-<u>Lie algebra</u>.

Definition:

A space *G* over a field \mathbb{F} is called a Lie algebra if the binary operation, $[.,.]: \mathcal{G} \times \mathcal{G} \longrightarrow \mathcal{G}$ Satisfies the following properties :

1) [X, Y] = -[Y, X];2) [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0.

Note:

We will assume that $= \mathbb{R}$.

Examples:

1) suppose that M is a smooth manifold, then the module X(M) is a Lie algebra under operation :

$$[X,Y] = XoY - YoX; X,Y \in X(M).$$

- 2) Every arthemetic linear space V is a Lie algebra with [X, Y] = 0, $X, Y \in V$.
- 3) Every associative algebra A is a Lie algebra with respect to the operation :

$$[X,Y] = X \cdot Y - Y \cdot X ; X,Y \in A .$$

In particular, the general matrix algebra [A, B]A.B - B.A; $A, B \in M_{n,n}$

Where . is the product matrix operation .

3- <u>Lie algebra of Lie group</u>.

Definition:

Let G be a Lie group, $g \in G$, define maps :

 $L_g: G \to G$ and $R_g: G \to G$ by $L_g(h) = g.h$, $R_g(h) = h.g$

 L_q is called a left shift to element g.

 R_q is called a right shift to element g.

--20

The maps R_g and L_g are a smooth maps have the following properties :

1)
$$L_g o L_h = L_{gh} : G \to G ; g, h \in G .$$

 $(L_g o L_h)(p) = L_g(L_h(p)) = L_g(hp) = g(hp) = (gh)p = L_{gh}(p) .$

Therefore, $L_g o L_h = L_{gh}$.

- 2) $R_{g}oR_{h} = R_{hg}$, (*H*.*W*).
- 3) The maps L_g and R_g are diffeomorphisim. This can be get directly from,
 ∀g ∈ G, (L_g)⁻¹ = L_{g⁻¹} and (R_g)⁻¹ = R_{g⁻¹},
 Then, L_go(L_g)⁻¹ = L_goL_{g⁻¹} = L_{gog⁻¹} = L_e, where e is the identity element of G,
 i.e L_e (g) = e.g = g.

By the same way, we have:

$$(L_g)^{-1}oL_g = L_{g^{-1}}oL_g = L_{g^{-1}g} = L_e$$
.

Therefore, we get that L_g is isomorphisim, and since L_g , $L_{g^{-1}}$ are differentiables (smooth), then we get that L_g is diffeomorphisim.

Definition:

A vector field $X \in X(G)$ is called a left invariant $if \forall g \in G$, then $(L_g)_*X = X$, where $(L_g)_*: X(G) \to X(G)$ is the differential map of the smooth map $L_g: G \to G$.

Theorem:

A set G of all left invariant vector fields on Lie group G is a linear space which is isomorphic to the tangent space $T_e(G)$ of Lie group G at the identity.

Inparticular, im G = dim G.

Definition:

The Lie algebra $\mathcal{G}(G)$ of all left invariant vector fields of Lie group G is called a Lie algebra of Lie group.

Proposition:

The linear space G of all left invariant vector fields of Lie group G is a Lie algebra with respect to the commutator operation of vector fields.

Proof: (H.W).

4-Homomorphisim of Lie groups and Lie algebras.

Definition:

A map $\varphi: G \longrightarrow H$ of Lie groups is called a homomorphism of Lie groups if:

- 1) φ is smooth ;
- 2) $\varphi(x,y) = \varphi(x)\varphi(y), x, y \in G$.

Definition:

A ma $\phi: \mathcal{G} \to h$ of Lie algebras is called a homomorphism of algebras if:

- 1) ϕ is a linear map ;
- 2) $\phi[X,Y] = [\phi X, \phi Y]$; $X, Y \in \mathcal{G}$.

5-The action of Lie group on a smooth manifold.

Definition:

Let *G* be a Lie group and *M* be a smooth manifold, we say that *G* act differentially on *M* of the left, if there exist a smooth map $\varphi: G \times M \longrightarrow M$ which satisfies the following conditions:

- 1) $\forall g \in G$, the map $\varphi_g: M \to M$ which defined by $\varphi_g(m) = \varphi(g, m) = gm$ is diffeomorphism.
- 2) $\varphi_{gh}(m) = \varphi_g o \varphi_h(m) = \varphi_g (\varphi_h(m)) = g(hm). \forall g, h \in G, m \in M$.

Note that $\varphi_e(m) = em = m$ where e is the identity element of G.

Definition:

We say that G acts effectively if satisfies : If $\varphi_q(m) = m$, $\forall m \in M$ then g = e.

And we say that G acts freely, if $\varphi_g(m) = m$ for some $m \in M$, then g = e.

Definition:

The Lie group G act on M of the right, if there exist a smooth map $\varphi: M \times G \longrightarrow M$ which satisfies the following conditions:

1) $\forall g \in G$, the map $\varphi_g: M \to M$ which defined by $\varphi_g(m) = \varphi(m, g) = mg$ is diffeomorphisim.

2)
$$\varphi_{gh}(m) = \varphi_h o \varphi_g(m) = \varphi_h \left(\varphi_g(m) \right) = \varphi_h(mg) = (mg)h, \forall g, h \in G, m \in M$$

Example:

Suppose that V is n-dimensional linear space, denoted by β to the set of all basis of V. The Lie group $GL(n, \mathbb{R})$ acts on β of the right as the follows:

Let =
$$(e_1, \dots, e_n) \in \beta$$
, $g = (g_j^i) \in GL(n, \mathbb{R})$.
Put $\varphi_g(b) = (g_1^{i_1} e_{i_1}, \dots, g_n^{i_n} e_{i_n})$.

We know that $\varepsilon_i = g_i^j e_j$, (i = 1, ..., n),

Where (g_i^j) is the transition matrix from the basis $\{e_1, ..., e_n\}$ to the basis $\{\varepsilon_1, ..., \varepsilon_n\}$

$$\varphi_g(b) \in \beta$$

Clearly that φ_g is bijective and the diffeomorphisim.

Let , $h \in GL(n, \mathbb{R})$, then,

$$\varphi_h o \varphi_g(b) = \varphi_h o \varphi_g(e_1, \dots, e_n)$$

$$= \varphi_h(\varepsilon_1, \dots, \varepsilon_n) = \left(h_1^{i_1} \varepsilon_{i_1}, \dots, h_n^{i_n} \varepsilon_{i_n}\right)$$

$$= \left(h_1^{i_1} g_{i_1}^{j_1} e_{j_1}, \dots, h_n^{i_n} g_{i_n}^{j_n} e_{j_n}\right)$$

$$= \left((gh)_1^{j_1} e_{j_1}, \dots, (gh)_n^{j_n} e_{j_n}\right)$$

$$= \varphi_{gh}(b)$$

Therefore, $\varphi_{gh} = \varphi_h o \varphi_g$.

Then the Lie group $GL(n, \mathbb{R})$ acts on β on the right.

<u>PART(3)</u> <u>Princible fiber bundle space .</u> <u>1- Princible fiber bundle.</u>

Definition:

Suppose that the Lie group *G* acts on smooth manifold *M* then for each $m \in M$ generates a map $\delta_m: G \to M$, such that, for each $g \in G$, $\delta_m(g) = \varphi_g(m)$.

The image of δ_m called an orbit of the point $m \in M$. The set of all orbit will be denoted by $Orb_G M$ which is a smooth manifold.

Definition:

A princible fiber bundle is a set of four (P, M, Π, G) , where *P* is a smooth manifold, and *G* is a Lie group which is acts freely on *P* of the right, $M=Orb_G P$ is the space of the orbits.

 $\Pi: P \longrightarrow M$, is a projection (which is smooth), such that the following are satisfies:

There is an open cover U of M, such that,

$$\forall u \in U, \exists F_u: \Pi^{-1}(U) \longrightarrow G$$

Where $(F_u \text{ is a smooth map})$ satisfies the conditions:

1) $F_u(pg) = F_u(p)g$; $(p \in P, g \in G)$; 2) The map $\psi_u: F_u: \Pi^{-1}(U) \longrightarrow U \times G$ satisfies:

 $\psi_u(p) = (\Pi(p), F_u(p))$ is diffeomorphisim.

P: is called a fiber space (total space);

G: is called a structure group;

M: is called a basis of fiber bundle;

 Π : is called a canonical projection;

 $\forall m \in M$, $\Pi^{-1}(m)$ is called a fiber over m.

Example:

Consider (P, M, Π_1, G), where M and G smooth manifold and Lie group respectivly.

 $P = M \times G$; $\Pi_1: M \times G \longrightarrow M$ is the projection on the first factor ($\Pi_1(m, g) = m$). The Lie group *G* acts on *P* of the right as follows:

$$\varphi_h(m,g) = (m,g)h = (m,gh).$$

This action is freely because if $\varphi_h(m,g) = (m,g)$, so(m,gh) = (m,g), then, gh = g and thus h = e.

Now: suppose that the open cover \mathcal{U} consist of element U = M.

1)
$$F_U(p) = F_U(m, g) = g = \Pi_2(p) \Rightarrow F_U = \Pi_2;$$

 $F_{U}(pg) = F_{U}((m,h)g) = F_{U}(m,hg) = \Pi_{2}(m,hg) = hg = \Pi_{2}(p)g = F_{U}(p)g;$

2) ψ_U is diffeomorphism.

Definition:

Suppose that $\beta_1(P_1, M, \Pi_1, G_1)$ and $\beta_2(P_2, M, \Pi_2, G_2)$ are two fiber bundle spaces, a homomorphisim fiber bundle from β_1 to β_2 is a pair (f, ρ) , where $f: P_1 \to P_2$ is a smooth map and $\rho: G_1 \to G_2$ is a homomorphisim of Lie groups such that:

1) The following diagram is commutative,

2) $\forall p \in P_1 \text{ and } \forall g \in G_1, \text{then } f(pg) = f(p)\rho(g).$

In particular, if (P_1, f) is a sub manifold of P_2 , and (G_1, ρ) is a Lie sub group of G_2 , then, β_1 is called a sub fiber bundle of β_2 .

Note:

Another important case, if f is a diffeomorphisim, and ρ is an isomorphisim of Lie groups, then the pair (f, ρ) is called an isomorphisim of principle fiber bundles, or we say that β_1 and β_2 are equivalent principle fiber bundles.

Structure equation of principle fiber bundle.

a-Introduction:-

Definition:

A smooth map $\phi: M \to N$ is called submersion if its rank equal to the dimension of N.

Theorem *****:

Suppose that $\beta = (P, M, \Pi, G)$, is a principle fiber bundle, then the map $\Pi: P \to M \dots \dots$

Definition:

Suppose that $\beta = (P, M, \Pi, G)$, is a principle fiber bundle ,denote by $X_{\Pi}(P)$ to the space of vector field of *P*, such that if its Π -connection with the vector fields on *M*, i.e.

$$X_{\Pi}(P) = \{ X \in X(P) \colon \exists Y \in X(M) \colon \Pi_* X = Y \}.$$

Denote by $\tilde{\mathcal{V}} = ker \Pi_*$, then on *P* appear distribution $\mathcal{V} = \mathcal{C}^{\infty}(P) \otimes \tilde{\mathcal{V}}$, i.e.

$$\mathcal{V} = \{ \sum f_i X_i \colon f_i \in C^{\infty}(P), X_i \in \tilde{\mathcal{V}} \} .$$

The distribution $\boldsymbol{\mathcal{V}}$ is called a vertical distribution on $% \boldsymbol{\mathcal{V}}$.

<u>Note:</u> According to theorem [*], we have, if $p \in P$ any point, then,

$$dim\mathcal{V}_p = dim\tilde{\mathcal{V}}_p = dim ker(\Pi_*)_p = dimT_p(P) - rank(\Pi_*)_p = dimP - dimM$$

<u>Fundamental Lie algebra.</u>

Definition:

Suppose that a Lie group *G* acts on *P* (of the right), then defined a map : $\lambda: \mathcal{G} \to X(P)$

(since, if G acts on P, then $\delta_p: G \to P$ is an orbit which is a smooth map).

The map λ generate vector field $X' = \lambda(X) \in X(P)$, λ is called a homomorphisim of Lie algebras, i.e :

$$\lambda([X,Y]) = [\lambda X, \lambda Y]$$

The image of λ is a Lie sub algebra $f \subset X(P)$, its elements are called fundamental vector fields on *P*. The Lie algebra f is called a fundamental Lie algebra of vector fields on .

Remark:

The Lie algebra f generates sub module $\mathcal{F} = C^{\infty}(P) \otimes f$ of the module X(P), i.e.

$$\mathcal{F} = \{ \sum f_i X_i : f_i \in C^{\infty}(P), X_i \in \mathcal{F} \}.$$

Proposition:

The map $\lambda: \mathcal{G} \to \mathcal{F}$ is an isomorphisim.

Theorem:

The distribution \mathcal{V} and \mathcal{F} on the *P* are concides and $dimG = dimP - dimM = dim\mathcal{V}$

<u>b- the structure equation:</u>

Suppose that $\beta = (P, M, \Pi, G)$ is a principle fiber bundle, \mathcal{V} its vertical distribution, and the indises:

$$i, j, k, ... = r + 1, ..., r + n;$$

 $a, b, c = 1, ..., n ; n = dimM;$
 $\alpha, \beta, \gamma = 1, ..., r + n ; r + n = dimP$

Suppose that $\{E_1, ..., E_r\}$ is a basis of the algebra \ldots since, $\lambda: \mathcal{G} \to \mathcal{F}$ is isomorphisim, then the vector fields $\{E'_1, ..., E'_r\}$ is a basis of the linear space \mathcal{F} , then, a basis of distribution $\mathcal{F} = \mathcal{V}$.

Lemma 1:

Suppose that *D* is r-dimensional distribution on a smooth manifold *M*, then for each basis for the *D*, we can complete this basis to the basis for the module X(M).

Lemma 2 :

Suppose that $\{E_1, ..., E_n\}$ is a basis of the algebra \mathcal{G} , then, $[E_i, E_j] = C_{jk}^i E_k$, where C_{jk}^i are called the constant structure of Lie algebra.

Lemma 3 :

Suppose that $\{\omega^i\}$ is a basis of a codistribution, then,

$$d\omega^{i} = \omega_{j}^{i} \wedge \omega^{j}$$
; $\omega_{j}^{i} \in \Lambda_{1}(P)$.

Theorem:

The structure equation of principle fiber bundle $\beta = (P, M, \Pi, G)$ are :

1) $d\omega^{i} = \omega_{j}^{i} \wedge \omega^{j};$ 2) $d\omega^{a} = -\frac{1}{2} C_{bc}^{a} \omega^{b} \wedge \omega^{c} + \omega_{j}^{a} \wedge \omega^{j}.$

Connection on principle fiber bundle.

Definition:

A projection from the module X(P) on the sub module \mathcal{V} is called a vertical projection.

Definition:

We say that the endomorphisim f of the module X(P) is invariant with respect to the action of the Lie group G if for each $g \in G$, then, $(\varphi_g)_* of = fo \ (\varphi_g)_*$; $\{\varphi_g : P \to P\}$.

Since G acts on P of the right, then, φ_g can be written as R_g , and then we have,

$$(R_g)_* of = fo \ (R_g)_* \ ; R_g(p) = \varphi_g(p) = pg.$$

Definition:

A vertical projection which is invariant with respect to the structure group is called a connection on principle fiber bundle, this means, $\Pi_V \in End(X(P))$ is a connection if,

1)
$$\Pi_V^2 = \Pi_V$$
;
2) $Im\Pi_V = \mathcal{V}$;
3) $\forall g \in G$, we have $(R_g)_* o\Pi_V = \Pi_V o (R_g)_*$

Definition:

Suppose that Π_V is a vertical projection in , then, $\Pi_H = id - \Pi_V$ is the complement projection.

A distribution $\mathcal{H} = ker \Pi_V = Im \Pi_H$ is called a horizontal distribution, and the projection Π_H is called a horizontal projection.

Proposition: (H.W)

Suppose that Π_V is connection (i.e. Π_V is invariant w.r.t. action of the structure group *G*), then, Π_H also is invariant w.r.t. action of the structure group *G*.

Theorem:

The giving of the connection on a principle fiber bundle $\beta = (P, M, \Pi, G)$ is equivalent to the setting of distribution $\mathcal{H} \subset X(P)$, such that:

- 1) $X(P) = \mathcal{V} \oplus \mathcal{H}$;
- 2) $(R_g)_* o \Pi_H = \Pi_H o(R_g)_*$.

Definiti0n:

The isomorphisim $\lambda: \mathcal{G} \to \mathcal{F}$ generates an isomorphisim :

 $\wedge = id \otimes \lambda \otimes : C^{\infty}(P) \otimes \mathcal{G} \longrightarrow C^{\infty}(P) \mathfrak{F} = \mathcal{F} \cong \mathcal{V}.$

Note that, $\wedge (1 \otimes X) = \lambda(X)$ and $\wedge (f \otimes X) = f \wedge (1 \otimes X) = f \lambda(X)$; $f \in C^{\infty}(P)$.

Define $\theta = \Lambda^{-1} o \Pi_V$, where Π_V is a connection on *P*.

Since,
$$\lambda: \mathcal{G} \to \mathcal{F}$$
, $\wedge: \mathcal{C}^{\infty}(P) \otimes \mathcal{G} \to \mathcal{C}^{\infty}(P) \mathcal{F} = \mathcal{F} \cong \mathcal{V}$ and $\Pi_{V}: X(P) \to \mathcal{V}$,

Then, $= \wedge^{-1} o \Pi_V : X(P) \longrightarrow C^{\infty}(P) \otimes \mathcal{G}$.

A homomorphisim θ is called a connection form which its value in Lie algebra \mathcal{G} .

Theorem:

The giving of the connection on principle fiber bundle $\beta = (P, M, \Pi, G)$ is equivalent to the giving the 1- form θ on a distribution with value in Lie algebra of structure Lie group which has the following properties:

1) $\theta o \wedge = id$;

2) $\theta(fX') = f \otimes X ; X' \in \mathfrak{F} \subset X(P).$

Structure equation of connection.

Theorem:

The principle fiber bundle $\beta = (P, M \Pi, G)$ has connection iff the system $\{\omega^a\}$ satisfies the following relation:

$$d\omega^{a} = -\frac{1}{2}C^{a}_{bc}\omega^{b} \wedge \omega^{c} + \frac{1}{2}R^{a}_{ij}\omega^{i} \wedge \omega^{j} \qquad \dots \dots \dots (*)$$

Definition:

The relations:

$$d\omega^{i} = \omega_{j}^{i} \wedge \omega^{j} ;$$

$$d\omega^{a} = -\frac{1}{2} C^{a}_{bc} \omega^{b} \wedge \omega^{c} + \frac{1}{2} R^{a}_{ij} \omega^{i} \wedge \omega^{j} .$$

Are called the structure equation of connection(the first and second group respectively).

Remark:

Let
$$X \in X(P)$$
, then, $X = X^a E'_a + X^i E_i$

Remark:

Let θ be a connection form,

$$\begin{split} \theta(X) &= \theta(X^a E'_a) + \theta(X^i E_i) = X^a \otimes E_a = \omega^a(X) \otimes E_a = \omega^a \otimes E_a(X) \Longrightarrow \theta = \omega^a \otimes E_a \,, \\ \text{Then, } \theta &= d\omega^a \otimes E_a \,. \end{split}$$

Denoted by $[\theta_1, \theta_2] = \omega^b \wedge \omega^c \otimes [E_b, E_c], \underline{2}$ which is called the interior commutator of the forms θ_1 and θ_2 .then the relation (*) can be written as the following form:

$$d\theta = -\frac{1}{2}[\theta_1, \theta_2] + \phi$$

Where, $\phi = \frac{1}{2} R_{ij}^a \omega^i \wedge \omega^j \otimes E_a$ is 2-form on *P* with value in the Lie algebra *G* which is called curvature.

<u>Principle fiber bundle of frames.</u>

Definition:

Let *M* be n-dimensional smooth manifold, $m \in M$. Consider the space $T_m(M)$, Let $\{e_1, \dots, e_n\}$ be a basis of $T_m(M)$, the set $(m; e_1, \dots, e_n)$ is called a frame.

Denoted by $BM = \{(m; e_1, ..., e_n) : m \in M\}$ the set of all frames, then there exist a surjective map $\Pi: BM \to M$. The subset $\Pi^{-1}(m) = \{\text{all frames which based at the point } m\}$, which is called a fiber over M.

Remark:

The Lie group $GL(n, \mathbb{R})$ acts freely on BM on the right by the form:

(m; $e_1, ..., e_n$) $g = (m; g_1^{i_1} e_{i_1}, ..., g_n^{e_n} e_{i_n}); g = g_j^i$.

This action is freely, because, $\exists p \text{ and } pg = p \implies g = I_n$;

 $(\mathbf{m}; e_1, \dots, e_n)g = \left(m; g_1^{i_1} e_{i_1}, \dots, g_n^{e_n} e_{i_n}\right) \Longrightarrow e_k = g_k^j e_j \implies g = I_n.$

If P_1 and P_2 are two frames then, $\Pi(P_1) = \Pi(P_2) \Leftrightarrow \exists g \in GL(n, \mathbb{R})$ such that: $P_1g = P_2$, Where g is the transition matrix from the frame $P_2 = (m_1, 2, \dots, 2)$ to the frame $P_2 = P_2$.

Where g is the transition matrix from the frame $P_1 = (m; e_1, ..., e_n)$ to the frame $P_2 = (m; e'_1, ..., e'_n)$.

Definition:

Let (U, φ) be a local chart in M with coordinates $(x^1, ..., x^n)$. We define a map $F_U: \Pi^{-1}(U) \to GL(n, \mathbb{R})$ by $F_U(p) = g$, where g is the transition matrix from the canonical frame $(m; \frac{\partial}{\partial x^1}, ..., \frac{\partial}{\partial x^n})$ to the frame $(m; e_1, ..., e_n)$.

Define a map $\psi_U: \Pi^{-1}(U) \longrightarrow U \times GL(n, \mathbb{R})$ by the form:

$$\psi_U(p) = \big(\Pi(p), F_U(p) \big).$$

We have now $B(M) = (BM, M, \Pi, GL(n, \mathbb{R}))$ is a principle fiber bundle with base space M and canonical projection Π and structure group $GL(n, \mathbb{R})$. This principle fiber bundle is called is a principle fiber bundle of frames.

Remark:

Let *M* be an n-dimension smooth manifold, $m \in M$ be any point, $P = (m; e_1, ..., e_n)$ be any frame with based at *m*, then P can be identify with the linear isomorphisim $\rho : \mathbb{R}^n \to T_m(M)$

Which defined by the form:

$$\rho(x^1,\ldots,x^n)=X^ie_i.$$

Definition:

Let $B(M) = (BM, M, \Pi, GL(n, \mathbb{R}))$ be a principle fiber bundle of frames and $\rho \colon \mathbb{R}^n \to T_m(M)$ be a linear isomorphisim on BM, defined 1-form ω with value in the space \mathbb{R}^n by the form: $\omega_p(X) = \rho^{-1}o(\Pi_*)_p(X)$; $X \in T_p(BM)$.

 $\Pi: BM \longrightarrow M \text{ generates } (\Pi_*)_p: T_p(BM) \longrightarrow T_{\Pi(p)}(M) = T_m(M).$

 $\rho: \mathbb{R}^n \to T_m(M) \text{ and } \omega_p: T_p(BM) \to \mathbb{R}^n.$

The 1-form ω which is defined above is called mixture form.

Definition:

The r-form $\omega \in \Lambda_r(P)$ is called a horizontal form if $\omega(X) = 0$, $\forall X \in \mathcal{V}$.

Theorem:

In the first and the second group of the structure equation of the principle fiber bundle of frames are given by the forms:

$$d\omega^{i} = -\omega^{i}_{j} \wedge \omega^{j};$$
$$d\omega^{i}_{j} = -\omega^{i}_{k} \wedge \omega^{k}_{j} + \omega^{i}_{jk} \wedge \omega^{k}$$

Fundamental theorem of tensors analysis.

The setting of tensor field *t* of type (r,s) on smooth manifold M equivalent to the setting smooth functions $\{t_{i_1...i_r}^{j_1...j_s}\}$ on the principle fiber bundle of frames, which are satisfies:

$$dt_{i_{1}...i_{r}}^{j_{1}...j_{s}} - t_{ki_{2}...i_{r}}^{j_{1}...j_{s}} \omega_{i_{1}}^{k} - \cdots - t_{i_{1}...i_{r-1}k}^{j_{1}...j_{s}} \omega_{i_{r}}^{k} + t_{i_{1}...i_{r}}^{kj_{2}...j_{s}} \omega_{k}^{j_{1}} + \cdots + t_{i_{1}...i_{r}}^{j_{1}...j_{s-1}k} \omega_{k}^{j_{s}}$$
$$= t_{i_{1}...i_{r}k}^{j_{1}...j_{s}} \omega^{k}.$$

where $\{t_{i_1...i_rk}^{j_1...j_s}\}$ are the system of smooth functions equal to the coorsponding components of the tensor *t*.

<u>Structure equation of connection in principle fiber bundle of</u> <u>frames.</u>

Lemma:

Let (P, M, Π, G) be a principle fiber bundle. Suppose that θ_1 and θ_2 are two connection forms on (P, M, Π, G) , then, $\xi = \theta_1 - \theta_2$ is a horizontal form, this mean:

 $\xi(X) = 0 \forall X \in \mathcal{V} \,.$

Proof:

Since θ_1 and θ_2 are two connection forms, then, $\theta_1 o \wedge = \theta_2 o \wedge = id$. If *G* acts on *P* on the right, $: \mathcal{G} \to X(P)$, $\lambda(X) = X'$, then, $\wedge = id \otimes \lambda$: $\mathcal{C}^{\infty}(P) \otimes \mathcal{G} \to \mathcal{C}^{\infty}(P) \otimes X(P)$,

 $\theta_1 o \wedge = \theta_2 o \wedge = id$ means $(\theta_1 - \theta_2) o \wedge = 0$

But we know that $\mathcal{F} = \mathcal{C}^{\infty}(P) \otimes \mathfrak{F} = \mathcal{V}$

Then, $\forall X \in \mathcal{V}$, $\exists Y \in C^{\infty}(P) \otimes \mathcal{G}$ such that $\land Y = X$

$$(\theta_1 - \theta_2)(X) = (\theta_1 - \theta_2)(\wedge Y) = (\theta_1 - \theta_2)o \wedge (Y) = 0, \forall X \in \mathcal{V}.$$

The structure equation.

Suppose that $(B(M), M, \Pi, G)$ is a principle fiber bundle of frames, and suppose that θ is a connection:

$$\begin{aligned} \theta_j^i - \omega_j^i &= \gamma_{jk}^i \omega^k \; ; \; \left\{ \gamma_{jk}^i \right\} \in C^{\infty} \big(B(M) \big) \\ & \Longrightarrow \theta_j^i - \omega_j^i = \gamma_{jk}^i \omega^k \end{aligned}$$

According to the first group of structure equation of principle fiber bundle of frames we have

$$d\omega^{i} = -\omega_{j}^{i} \wedge \omega^{j} = -\theta_{j}^{i} \wedge \omega^{j} + \gamma_{jk}^{i} \omega^{k} \wedge \omega^{j}$$
$$= -\theta_{j}^{i} \wedge \omega^{j} + \gamma_{[jk]}^{i} \omega^{k} \wedge \omega^{j} = -\theta_{j}^{i} \wedge \omega^{j} - \gamma_{[jk]}^{i} \omega^{j} \wedge \omega^{k}$$

Where the bracket [] refer to alternative of the indexes *i* and *j*.

$$d\omega^{i} = -\theta_{j}^{i} \wedge \omega^{j} + \frac{1}{2} \delta_{jk}^{i} \omega^{j} \wedge \omega^{k} \quad \dots (1)$$

Where, $\delta_{jk}^i = -2\gamma_{[jk]}^i$. The equation (1) is called the first group of structure equation of connection.

Similar to the principle fiber bundle, we can write

 $\omega = \omega^i \otimes \varepsilon_i$ (mixture form with respect to the canonical basis).

$$d\omega = d\omega^{i} \otimes \varepsilon_{i} = -\theta_{j}^{i} \wedge \omega^{j} \otimes \varepsilon_{i} + \frac{1}{2} \delta_{jk}^{i} \omega^{j} \wedge \omega^{k} \otimes \varepsilon_{i}$$
$$d\omega = -\theta \wedge \omega + \Omega.$$

Where $\Omega = +\frac{1}{2} \delta_{jk}^{i} \omega^{j} \wedge \omega^{k} \otimes \varepsilon_{i}$ is 2-form in *BM* with value in \mathbb{R}^{n} which is called the torsion form of connection. on the other hand, remember the second group of structure equation of connection in principle fiber bundle, which has the form:

$$d\omega^{a} = -\frac{1}{2} C^{a}_{bc} \omega^{b} \wedge \omega^{c} + \frac{1}{2} \mathcal{R}^{a}_{k\ell} \omega^{k} \wedge \omega^{\ell}$$

In the case of principle fiber bundle of frames θ_j^i play the role of ω^a , then,

$$d\theta_{j}^{i} = -\theta_{k}^{i} \wedge \theta_{j}^{k} + \frac{1}{2} \mathcal{R}_{jk\ell}^{i} \omega^{k} \wedge \omega^{\ell} \dots (2)$$

Or
$$d\theta = -\frac{1}{2}[\theta, \theta] + \phi$$

The equation (2) is called the second group of structure equation of connection in principle fiber bundle of frames, where,

$$\phi = \frac{1}{2} \mathcal{R}^{i}_{jk\ell} \omega^k \wedge \omega^\ell \text{ and } \frac{1}{2} [\theta, \theta] = \theta^i_k \wedge \theta^k_j.$$

From the above disscusion, we get the following theorem:

Theorem:

The complete group of the structure equations of connection in the principle fiber bundle of frames has the form:

1) $d\omega = -\theta \wedge \omega + \Omega$; 2) $d\theta = -\frac{1}{2}[\theta, \theta] + \phi$.

Where, $\Omega = +\frac{1}{2} \delta^i_{jk} \omega^j \wedge \omega^k \otimes \varepsilon_i$, $\Phi = \frac{1}{2} \mathcal{R}^i_{jk\ell} \omega^k \wedge \omega^\ell \otimes E^j_i$ are the torsion and curvature forms of connection respectively.

Theorem:

The connection in the principle fiber bundle of frames induce two tensor lields, the first tensor of type (2,1) which is called a torsion tensor of connection, and the second tensor of type (3,1) which is called a curvature tensor of connection.

Problem:

Find
$$\nabla \delta^i_{jk}$$
 and $\nabla \mathcal{R}^i_{jk\ell}$.

Definition:

A smooth manifold which fixed connection on its principle fiber bundle of frames is called affine connection space.

Remark:

Let M be an n-dimensional affine connection space, θ be a connection form. Let t be a tensor of type (r, s) on M, according to the fundamental theorem of tensor analysis, the setting of tensor t on M equivalent to the setting a system of functions $t^{-}=\{t_{i_1...i_r}^{j_1...j_s}\}$ on *BM* which satisfies the equation:

$$\nabla t_{i_1\dots i_r}^{j_1\dots j_s} = t_{i_1\dots i_rk}^{j_1\dots j_s}\omega^k.$$

Where, { $t_{i_1...i_rk}^{j_1...j_s}$ are smooth fuctions which are given on *BM*:

$$\nabla t_{i_1 \dots i_r}^{j_1 \dots j_s} = dt_{i_1 \dots i_r}^{j_1 \dots j_s} - t_{ki_2 \dots i_r}^{j_1 \dots j_s} \theta_{i_1}^k - \dots - t_{i_1 \dots i_{r-1}k}^{j_1 \dots j_s} \theta_{i_r}^k + t_{i_1 \dots i_r}^{kj_2 \dots j_s} \theta_{k}^{j_1} + \dots + t_{i_1 \dots i_r}^{j_1 \dots j_{s-1}k} \theta_{k}^{j_s}$$

$$= t_{i_1 \dots i_rk}^{j_1 \dots j_s} \theta^k.$$

The functions $\{t_{i_1...i_rk}^{j_1...j_s}\}$ are tensors of type (r + 1, s) this mean $\nabla t_{i_1...i_r}^{j_1...j_s}$ is a tensor of type (r + 1, s) which is called a covariant differential in the given connection and will be defined by ∇t .

Definition:

A tensor field $\nabla_X t$ is called a covariant derivative of the tensor field t in the direction of the vector field X, and the vector field $\nabla_X : \tau(M) \to \tau(M)$ is called an operator of covariant derivative in the direction of the vector field X.

Theorem:

The operator ∇_X has the following properties:

- 1) $\nabla_X f = X f$;
- 2) $\nabla_{fX+gY}t = f\nabla_Xt + g\nabla_Yt;$
- 3) $\nabla_X(t_1 + t_2) = \nabla_X(t_1) + \nabla_X(t_2);$
- 4) $\nabla_X(t_1 \otimes t_2) = \nabla_X(t_1) \otimes t_2 + t_1 \otimes \nabla_X(t_2).$ Where $X, Y \in X(M)$, $f, g \in C^{\infty}(M)$, $t_1, t_2, t \in \tau(M).$

Corollary:

In the space M of affine connection defined operator $\nabla: X(M) \times X(M) \rightarrow X(M)$ which has the following properties:

1) $\nabla(fX + gY, Z) = f\nabla(X, Z) + g\nabla(Y, Z);$ 2) $\nabla(X, Y + Z) = \nabla(X, Y) + \nabla(X, Z);$ 3) $\nabla(X, fY) = X(f)Y + f\nabla(X, Y).$ Where X, Y, Z $\in X(M)$ and $f, g \in C^{\infty}(M).$

Definition:

The operator ∇ which has the above properties is called Kozel's operator, and we have $\nabla(X, Y) = \nabla_X Y$.

<u>Remark:</u>

The connection which identify with the Kozel's operator is called affine connection or linear connection of the manifold M.

Theorem:

The setting of affine connection on smooth manifold is equivalent to the setting of Kozel's operator $\nabla: X(M) \times X(M) \longrightarrow X(M)$ which has the following properties:

1) $\nabla_{fX+gY}Z = f\nabla_X t + g\nabla_Y Z;$ 2) $\nabla_X(Y+Z) = \nabla_X(Y) + \nabla_X(Z);$ 3) $\nabla_X(fY) = X(f)Y + f\nabla_X.$ Where X, Y, $Z \in X(M)$ and $f, g \in C^{\infty}(M).$

Theorem:

Let M be the space of affine connection ∇ , and S, \mathcal{R} are torsion and curvature tensors respectively of this connection, then:

1)
$$S(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y];$$

2) $\mathcal{R}(X,Y)Z = ([\nabla_X,\nabla_Y] - \nabla_{[X,Y]})Z.$

Where $X, Y, Z \in X(M)$.

Remark:

This theorem (above) explain that torsion and curvature tensors can be written in the terms of Kozel's operator.

G- Structure of the first order on smooth manifold.

We call to, $\beta_1 = (P_1, M, \Pi_1, G_1)$ and $\beta_2 = (P_2, M, \Pi_2, G_2)$ are two principle fiber bundles on a smooth manifold *M*. A homomorphism from β_1 in to β_2 is a pair (f, ρ) , where $f: P_1 \rightarrow P_2$ is a smooth map and $\rho: G_1 \rightarrow G_2$ is a homomorphism of Lie groups such that:

1) The following diagram is commutative :

2) $f(pg) = f(p)\rho(g)$

Remark:

In particular, if (P_1, f) is a sub manifold of P_2 and (G_1, ρ) is a Lie sub group of Lie group G_2 then, $\beta_1 = (P_1, M, \Pi_1, G_1)$ is called a sub fiber bundle of $\beta_2 = (P_2, M, \Pi_2, G_2)$.

Definition:

The sub fiber bundle $\beta_1 = (P_1, M, \Pi_1, G_1)$ is called a reduction of the fiber bundle $\beta_2 = (P_2, M, \Pi_2, G_2)$ by a sub group (G_1, ρ) .

Remark:

For us, the most interest is the case, where $\beta_2 = (BM, M, \Pi, GL(n, \mathbb{R}))$ is a principle fiber bundle of frames and $\beta_1 = (P, M, \Pi, G)$ its sub fiber bundle, such that: $f: P \subset BM$ is the inclusion map, $\Pi = \Pi|_P$, and G is a linear group. This means Lie sub group of the general linear group with respect to the inclusion $\rho: G \subset GL(n, \mathbb{R})$.

Example:

If $G = O(n, \mathbb{R}) \subset GL(n, \mathbb{R})$, and

 $P = \{\text{all orthogonal frames of smooth manifold } M\} \subseteq BM = \{\text{all frames of } M\}.$

In this case $\beta_1 = (P, M, \Pi, G)$ will be sub fiber bundle.

Definition:

The sub fiber bundle (P, M, Π, G) which is defined as above (this means reduction of the principle fiber bundle of frames over the smooth manifold M by the given subgroup) is called *G*-structure of the first order over M.