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Differential Topology 

 

)1(PART 

.Smooth manifold 

.smooth structure and smooth manifold-1 

. :Definition 

      Let 𝑈, 𝑉 ⊆ ℝ𝑚 are open subset. A map 𝑓:𝑈 ⟶ 𝑉 is called a differentiable of class 𝑐𝑟 , if 
the functions 𝑓𝑖 = 𝑓𝑖(𝑥

1, … 𝑥𝑚); 𝑖 = 1,…𝑛 have the partial derivative up to order 𝑟.  

      i.e. 𝑓(𝑥1,…,𝑥𝑚)=𝑓11(𝑥1, … , 𝑥𝑚),… 𝑓𝑛(𝑥
1, … 𝑥𝑚) have 

𝜕𝑟𝑓𝑘

𝜕𝑟1𝑥1,…𝜕
𝑟𝑠𝑥𝑚

   , 𝑟1 +⋯+ 𝑟𝑠 = 𝑟. 

Definition: 

      If  𝑓 is differentiable and bijective and 𝑓−1 differentiable ,then we say that  𝑓 is 

diffeomorphisim 𝑈 on to 𝑉 and then 𝑈 and 𝑉 are said to be diffeomorphic . 

Remark: 

      We will assume that 𝑟 = ∞ and in this case , we say that 𝑓 is a smooth. 

Definition: 

      Suppose that 𝑀 is a housdorff space ,an open chart of dimension 𝑛 𝑖𝑛 𝑀 

Is a pair (𝑈, 𝜑), where 𝑈 is an open set in 𝑀 and 𝜑:𝑈 ⟶ 𝜑(𝑈) ⊆ ℝ𝑛 is a homeomorphisim 

on open sub set of ℝ𝑛 for ∈ 𝑈, 𝜑(𝑝) = (𝑥1,…,𝑥𝑛) are said to be a local coordinants of the 

point 𝑝 ∈ 𝑈 . 

Definition: 

      Two charts (𝑈, 𝜑), (𝑉, 𝜓) ,are said to be a smooth connection, if the map : 

𝜓𝜊𝜑−1: 𝜙(𝑈 ∩ 𝑉) ⟶ 𝜓(𝑈 ∩ 𝑉) 

 is diffeomorphisim in Euclidean space. 
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          𝜓(𝑉)    𝜑(𝑈)   
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 𝜓(𝑈 ∩ 𝑉)  𝜓𝜊𝜑−1  𝜑(𝑈 ∩ 𝑉)    

    

 y1 𝑥1              

 

Definition: 

      A family of n-dimensional charts on M {(𝑈𝑖,𝜑𝑖)} is called an atlas if 

1) All charts are to be pairwise smooth connection; 

2)∪𝑖∈𝐼 𝑈𝑖 =𝑀. 

Definition: 

      An atlas on 𝑀 is said to be a maximal , if every chart on 𝑀 which is a smooth connection 

with each chart of this atlas ,then its belong to this atlas. i.e.atlas in M is maximal if its no 

contained in any other atlas. 

Definition: 

      A maximal atlas is called a smooth structure . 

Definition: 

     A space M with smooth structure is called a smooth manifold. 
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Definition: 

      Two smooth structure on M are said to be equivalent , if each two charts are smooth 

connection. 

Example:(about non-equivelent smooth structure) 

      Suppose M=ℝ, 

(𝑼,𝝋);𝑼 = ℝ ,𝝋 = 𝒊𝒅; 

(𝑽,𝝋); 𝑽 = ℝ,𝝍 = 𝒙𝟑 

Exampls:(about smooth manifolds) 

1) M=ℝ𝑛 Euclidean space is an n dimensional smooth manifold. 

A maximal atlas consist of one chart (ℝ𝑛, 1ℝ𝑛) ; where 1ℝ𝑛: ℝ
𝑛 ⟶ℝ𝑛 is the identity map. 

2) Every finite dimensional linear space is a smooth manifold. 

Suppose that V is an  n  dimensional linear space; 

Let 𝛼 = (𝑒1, … , 𝑒𝑛) be a basis for V. consider a map : 

𝜑𝛼: 𝑉 ⟶ ℝ𝑛; 𝜑𝛼(𝑥) = (𝑥
1, … , 𝑥𝑛) 

Where (𝑥1, … , 𝑥𝑛) are the coordenentes of the vector 𝑥 ∈ 𝑉 in the basis 𝛼.                                                         

Clearly,𝜑𝛼 is bijective and then is a homeomorphisim . 

If 𝛽 = (𝜖1, … , 𝜖𝑛) is an another basis in V and 𝜑𝛽: 𝑉 ⟶ ℝ𝑛 given by 𝜑𝛽(𝑥) = (𝑥
1, … , 𝑥𝑛); 

𝑥1, … , 𝑥𝑛 are the coordenentes of the vector 𝑥 ∈ 𝑉 in the basis 𝛽 

Now,𝜑𝛼𝛽 = 𝜑𝛽𝜊𝜑𝛼: ℝ
𝑛 ⟶ℝ𝑛 givis the equation : 

𝑌𝑖 = 𝐶𝑗
𝑖𝑋𝑗; 𝑖 = 1,… , 𝑛,  

 where (𝐶𝑗
𝑖) is the transition matrix from the basis 𝛽 to the basis 𝛼 . 

Clearly that 𝜑𝛼𝛽 is diffeomorphisim .Therefore, every basis 𝛼 in V  generats a chart (𝑉, 𝜑𝛼) 

in V will be atlas in V and then defind a smooth structure. Therefore, V is  n  dimensional 

smooth manifold . 

Remark: 

      Suppose that  M  and  N  are smooth  manifolds of dimensions  m  and  n  respectively 

with the  smooth  structures : 
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{(𝑈𝛼 , 𝜑𝛼)}𝛼∈𝐴 and {(𝑉𝛽 , 𝜓𝛽)}𝛽∈𝐵 . 

Then, the set𝑀 ×𝑁 has smooth structures which is generated by the family 

{(𝑊𝛼𝛽 , 𝑋𝛼𝛽)}𝛼∈𝐴,𝛽∈𝐵. 

Where  𝑊𝛼𝛽 = 𝑈𝛼 × 𝑉𝛽  ,   𝑋𝛼𝛽 = 𝜑𝛼 × 𝜓𝛽 . 

      The smooth manifold  𝑀 × 𝑁  will be of dimension  n+m  which is called a product  

manifold of  M  and  N. 

      Clearly, this structure can be extended for any number of manifolds. 

      For example ,the product of any  n  copy of  𝑆1 is  n  dimensional smooth manifold which 

is denoted by  𝑇𝑛 and called  n  dimensional torus . 

2-Algebra of smooth functions on smooth manifold . 

Definition:   

      Let  𝑀𝑛 be a smooth manifold. A map 𝑓:𝑀 ⟶ ℝ is called a smooth function on  M  ,if 

for any chart (𝑈, 𝜑)  on  M , the map 𝑓𝜊𝜑−1𝜑(𝑈) ⟶ ℝ is smooth map of Euclidean space. 

Denote by 𝐶∞(𝑀) to the set of all smooth functions on  M . 

      The set 𝐶∞(𝑀) will be algebra over field ℝ with operations: 

1) (𝑓 + 𝑔)(𝑝) = 𝑓(𝑝) + 𝑔(𝑝); 

2) (𝜆𝑓)(𝑝) = 𝜆𝑓(𝑃); 

3) (𝑓. 𝑔)(𝑝) = 𝑓(𝑝). 𝑔(𝑝). 

 Where 𝑝 ∈ 𝑀, 𝑓, 𝑔 ∈ 𝐶∞(𝑀), 𝜆 ∈ ℝ .  

Algebra 𝐶∞(𝑀) is called an algebra of smooth functions on the manifold  M . 

3-Vector field on smooth manifold . 

Definition: 

      Suppose that 𝐶∞(𝑀) is algebra of smooth functions on  M . A linear operator  

𝑋: 𝐶∞(𝑀) ⟶ 𝐶∞(𝑀) is called a differentiation of algebra 𝐶∞(𝑀) 

If  𝑋(𝑓. 𝑔) = 𝑋(𝑓). 𝑔 + 𝑓. 𝑋(𝑔) ;   𝑓, 𝑔 ∈ 𝐶∞(𝑀)  .By the another way the map 

𝑋: 𝐶∞(𝑀) ⟶ 𝐶∞(𝑀) is called a differentiation of algebra 𝐶∞(𝑀)  if : 

1) 𝑋(𝑓 + 𝑔) = 𝑋(𝑓) + 𝑋(𝑔); 
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2) 𝑋(𝜆𝑓) = 𝜆𝑋(𝑓); 

3) 𝑋(𝑓. 𝑔) = 𝑋(𝑓). 𝑔 + 𝑓. 𝑋(𝑔).  

Where , 𝑔 ∈ 𝐶∞(𝑀) , 𝜆 ∈ ℝ . 

      Clearly that the set 𝑋(𝑀) of all differentiations of algebra  𝐶∞(𝑀) represent a module 

over a ring 𝐶∞(𝑀) with operations: 

1) (𝑋 + 𝑌)(𝑓) = 𝑋(𝑓) + 𝑌(𝑓); 

2) (𝑔𝑋)(𝑓) = 𝑔. 𝑋(𝑓). 

Where 𝑋, 𝑌 ∈ 𝑋(𝑀)  , 𝑓, 𝑔 ∈  𝐶∞(𝑀). 

Definition: 

A differentiation 𝑋(𝑀) of algebra 𝐶∞(𝑀) is called a smooth vector field on a smooth               

manifold  M.𝐶∞(𝑀)-module  𝑋(𝑀) is called a module of smooth vector fields on manifold  

M . 

Proposition: 

Let  M  be a smooth manifold , 𝑋 ∈ 𝑋(𝑀) ,𝑋(𝐶) = 0 ; C is a constant. 

Theorem: 

      Let (𝑈, 𝜑) be a local chart with coordinates {𝑥1, … , 𝑥𝑛} on a smooth manifold  M ,then  

the module 𝑋(𝑈) generated by {
𝜕

𝑥1
,…,

𝜕

𝜕𝑥𝑛 
}, in particular,∀𝑋 ∈ 𝑋(𝑀) then 𝑋 =

∑ 𝑋𝑖
𝜕

𝜕𝑥𝑖
     .              𝑛

𝑖=1  

 

Definition: 

      The basis 
𝜕

𝜕𝑥1
 , … ,

𝜕

𝜕𝑥𝑛
 of the module 𝑋(𝑈) is called a canonical basis. 

4- Tangent vectors and tangent space 

Definition: 

      Let  M  be a smooth manifold and let 𝑝 ∈ 𝑀 . A tangent vector 𝑋𝑝   at 𝑝 is a map 

𝑋𝑝 ∶ 𝐶
∞ (𝑈) ⟶ ℝ 

Where 𝑈 is an open neighborhood of  𝑝 ,such that: 
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1) 𝑋𝑝(𝜆𝑓 + 𝜇𝑔) = 𝜆𝑋𝑝(𝑓) + 𝜇𝑋𝑝(𝑔); 

2) 𝑋𝑝(𝑓. 𝑔) = 𝑋𝑃(𝑓). 𝑔(𝑝) + 𝑓(𝑝)𝑋𝑝(𝑔); 

for each 𝜆, 𝜇 ∈ ℝ , 𝑓, 𝑔 ∈ 𝐶∞ (𝑈)  

      The set of all tangent vectors at 𝑝 is called the tangent space  M  at 𝑝 and denoted by 

𝑇𝑝(M) 

Note:  

       The tangent space 𝑇𝑝(M) carries natural operations + and . turning it in to real vector 

space.  i.e. For all 𝑋𝑝 ,𝑌𝑝  ∈  𝑇𝑝(M) 𝑓 ∈ 𝐶∞(𝑀), 𝜆 ∈ ℝ, 

1) (𝑋𝑝 + 𝑌𝑝)(𝑓) = 𝑋𝑝 (𝑓) + 𝑌𝑝(𝑓) 

2) (𝜆𝑋𝑝 )(𝑓) = 𝜆𝑋𝑝 (𝑓). 

Theorem: 

      The giving of vector field 𝑋 ∈ 𝑋(𝑀) on  n – dimension of smooth manifold  M  

equivalent to giving family  of tangent vectors {𝑋𝑝 ∈  𝑇𝑝(M)} on  M  such that: in each local 

chart (𝑈, 𝜑) with coordinates {𝑥1, … , 𝑥𝑛}, the functions 𝑋𝑖(𝑝) = 𝑋𝑝 (𝑥
𝑖) belong to algebra 

𝐶∞ (𝑈) . 

5- Lie algebra of vector fields on a smooth manifold . 

            Let   M  be a smooth manifold ,   𝑋(𝑀)  be module of it is vector fields,𝑋, 𝑌 ∈

𝑋(𝑀),its  easy to check that 𝑋 ∘ 𝑌 does not be vector field . if , 𝑔 ∈ 𝐶∞(𝑀) , then: 

 

𝑋 ∘ 𝑌(𝑓. 𝑔) = 𝑋(𝑌(𝑓. 𝑔))  

                    =𝑋(𝑌(𝑓). 𝑔 + 𝑓. 𝑦(𝑔)) 

                    =𝑋(𝑌(𝑓). 𝑔 + 𝑌(𝑓). 𝑋(𝑔) + 𝑋(𝑓). 𝑌(𝑔) + 𝑓. 𝑋(𝑌(𝑔)) 

                    = 𝑋 ∘ 𝑌(𝑓). 𝑔 + 𝑌(𝑓). 𝑋(𝑔) + 𝑋(𝑓). 𝑌(𝑔) + 𝑓. 𝑋 ∘ 𝑌(𝑔) 

      In other hand if we change the vector fields 𝑋, 𝑌 we get : 

𝑌 ∘ 𝑋(𝑓. 𝑔) =  𝑌 ∘ 𝑋(𝑓). 𝑔 + 𝑋(𝑓). 𝑌(𝑔) + 𝑌(𝑓). 𝑋(𝑔) + 𝑓. (𝑌 ∘ 𝑋)(𝑔) 

Now: 

(𝑋 ∘ 𝑌 −  𝑌 ∘ 𝑋)(𝑓. 𝑔) = (𝑋 ∘ 𝑌 −  𝑌 ∘ 𝑋)(𝑓). 𝑔 + 𝑓. (𝑋 ∘ 𝑌 −  𝑌 ∘ 𝑋)(𝑔), 



-7- 
 

  

This mean that (𝑋 ∘ 𝑌 −  𝑌 ∘ 𝑋) ∈ 𝑋(𝑀). Denoted by [𝑋, 𝑌] = (𝑋 ∘ 𝑌 −  𝑌 ∘ 𝑋) 

Definition: 

      The operation  ∘: 𝑋(𝑀) × 𝑋(𝑀) ⟶ 𝑋(𝑀) which is defined by  𝜊(𝑋, 𝑌) = 𝑋𝜊𝑌 − 𝑌𝜊𝑋 =
[𝑋, 𝑌] is called a commutator of 𝑋 𝑎𝑛𝑑  𝑌 and the symbole [𝑋, 𝑌] is called a commutator or 

Lie bracket . 

Proposition: 

       prove that : 

1) [𝑋, 𝑌] = −[𝑌, 𝑋]; 

2) [[𝑋, 𝑌], 𝑍] + [[𝑌, 𝑍, ]𝑋] + [[𝑍, 𝑋], 𝑌] = 0 . 

:Definition 

The pair (𝑋(𝑀), 𝜊) is called a Lie algebra of smooth vector field of smooth manifold  M . 

Proposition: 

      The commutator operation is not𝐶∞(𝑀) − linear map. 

Remark: 

      We can write the commutator of vector fields 𝑋 and 𝑌 in the local chart (𝑈, 𝜑) with 

coordinates {𝑥1, … , 𝑥𝑛} as follows : 

𝑋 = 𝑋𝑖
𝜕

𝜕𝑥𝑖
    ; 𝑌 = 𝑌𝑗

𝜕

𝜕𝑥𝑗
    , then, 

 [𝑋, 𝑌]𝑖 = [𝑋, 𝑌](𝑥𝑖) = 𝑋 (𝑌(𝑥𝑖)) − 𝑌 (𝑋(𝑥𝑖)) = 𝑋(𝑌𝑖) − 𝑌(𝑋𝑖) =
𝜕𝑌𝑖

𝜕𝑥𝑖
 𝑋𝑗 −

𝜕𝑋𝑖

𝜕𝑥𝑗
  𝑌𝑗            

 

6-Tensor algebra of a smooth manifold . 

      Let  V  be a module over a commutative and associative ring  K  with identity or (K – 

module), 𝑉∗ be dual module of  K- linear functions on  V  with value in K . we have 𝑉 ≅

𝑉∗∗ = (𝑉∗)∗ by the map 𝜏: 𝑉 ⟶ 𝑉∗∗ which is defined by 𝜏(𝑥)(𝑤) = 𝑤(𝑥) ; 𝑥 ∈ 𝑉 , 𝑤 ∈ 𝑉∗. 

The module V is called a reflexive if the map 𝜏 is isomorphisim .  

Definition: 

      Let  V  be a reflexive K-module . consider a K-module 𝜏𝑟
𝑠(V) , the set of all maps  

𝑡: 𝑉 × 𝑉 × …× 𝑉⏟        
𝑟−𝑡𝑖𝑚𝑒𝑠

× 𝑉∗ × 𝑉∗ × …× 𝑉∗⏟          
𝑠−𝑡𝑖𝑚𝑒𝑠

⟶𝐾 ,which are K-linear in every argument. It is 
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element are called r-times covar iante and s-times contravariants tensors of module V .For 

short are called tensors of type  (r ,s). 

Definition: 

      Define an operation ⨂: 𝜏𝑟1
𝑠1(𝑉) × 𝜏𝑟2

𝑠2(𝑉) ⟶ 𝜏𝑟1+2
𝑠1+2(𝑉) as follows:  

If 𝑡1 ∈ 𝜏𝑟1
𝑠1(𝑉)   and 𝑡2 ∈ 𝜏𝑟2

𝑠2(𝑉), then 𝑡1⨂𝑡2 ∈ 𝜏𝑟1+2
𝑠1+2(𝑉)  such that : 

(𝑡1⨂𝑡2)(𝑢1, … , 𝑢𝑟1+𝑟2  , 𝑣
1, … , 𝑣𝑠1+𝑠2  ) =

𝑡1 (𝑢1, … 𝑢𝑟1 , 𝑣
1, … , 𝑣𝑠1)𝑡2(𝑢𝑟1+1   , … , 𝑢𝑟1+𝑟2   , 𝑣

𝑠1+1, … , 𝑣𝑠1+𝑠2) , where 𝑢1, … , 𝑢𝑟1+𝑟2 ∈ 𝑉 

and 𝑣1, … , 𝑣𝑠1+𝑠2 ∈ 𝑉∗ 

Theorem: 

      The operation ⨂ has the following properties :  

1) 𝑡1⨂(𝑡2 + 𝑡3) = 𝑡1⨂𝑡2 + 𝑡1⨂𝑡3; 

2) (𝑡1 + 𝑡2)⨂𝑡3 = 𝑡1⨂𝑡3 + 𝑡2⨂𝑡3; 

3) 𝑡1⨂(𝑡2⨂𝑡3) = (𝑡1⨂𝑡2) ⨂𝑡3 . 

      The operation ⨂ which has the above properties , is called a tensor product . 

The K-module 𝜏(𝑉) ≅ ⨁𝑟=0
∞ ⨁𝑠=0

∞ 𝜏𝑟
𝑠(𝑉) with tensor product is called a tensor algebra. 

Remark: 

      From the reflexivity of  V ,we have: 

𝜏0
1(𝑉) = {𝑡: 𝑉∗ ⟶𝐾} = 𝑉∗∗ = 𝑉  ,  𝜏1

0(𝑉) = {𝑡: 𝑉 ⟶ 𝐾} = 𝑉∗. 

 

Definition: 

       From the above definition we get that the sub modules 𝜏∗(𝑉) = ⨁𝑟=0
∞ 𝜏𝑟

0(𝑉) and 

𝜏∗(𝑉) = ⨁𝑠=0
∞ 𝜏0

𝑠(𝑉) represente sub algebras of the tensor algebra 𝜏(𝑉) and thy called 

covariant and contravariante tensor algebra of  V  respectively . 

Remark: 

      If  V  is a finite linear space over a field  K  and {𝑒1, … , 𝑒𝑛} is any basis of  V , 

{𝑒1, … , 𝑒𝑛} is a dual basis , then, 

𝑒𝑖(𝑒𝑗) = 𝛿𝑗
𝑖 = {

1  𝐼𝑓  𝑖 = 𝑗
0  𝐼𝑓  𝑖 ≠ 𝑗

    ,  then, 
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The tensor of the forms : 

𝑒𝑖1 ⊗…⊗ 𝑒𝑖𝑟 ⊗𝑒𝑗1⊗…⊗ 𝑒𝑗𝑠  ; 

𝑖1, … , 𝑖𝑟    , 𝑗1, … , 𝑗𝑟 = 1,… , 𝑛 , are basis of linear space 𝜏𝑟
𝑠(𝑉) . In particular, we have : 

dim 𝜏𝑟
𝑠(𝑉) = 𝑛𝑟+𝑠 

Remark: 

      The coordinates {𝑡𝑖1,…,𝑖𝑟
𝑗1,…,𝑗𝑠} of the tensor 𝑡 ∈ 𝜏𝑟

𝑠(𝑉) in this basis are equal to it is 

components . i.e. , 

𝑡𝑖1,…,𝑖𝑟
𝑗1,…,𝑗𝑠 = 𝑡(𝑒𝑖1 , … , 𝑒𝑖𝑟 , 𝑒

𝑗1 , … , 𝑒𝑗𝑠) . 

Definition: 

      Let  M be n-dimensional smooth manifold , 𝑝 ∈ 𝑀 , then, the tensor algebra 𝜏(𝑇𝑃(𝑀)) 

denoted by 𝜏𝑝(𝑀) and is called a tensor algebra of the manifold  M at the point  p .In the 

other hand 𝜏(𝑋(𝑀)) denoted by 𝜏(𝑀) and is called a tensor algebra of manifold  M .The 

element of the tensor algebra are called a tensor fields . 

 

Definition: 

A dual of the module  𝑋(𝑀) is called a module of differential 1-form on manifold  M , and is 

denoted by 𝑋∗(𝑀); 

 𝑋∗(𝑀) = {𝑡: 𝑋(𝑀) ⟶ ℝ}. 

 

Theorem: 

      The giving of tensor 𝑡 ∈ 𝜏𝑟
𝑠(𝑀) on smooth manifold  M equivalent to the giving family 

of tensors{𝑡𝑝 ∈ 𝜏𝑟
𝑠(𝑀); 𝑝 ∈ 𝑀} such that, in each local chart (𝑈, 𝜑) with coordinates 

{𝑥1, … , 𝑥𝑛} on  M , the functions,  

𝑡𝑖1,…,𝑖𝑟
𝑗1,…,𝑗𝑠(𝑝) = 𝑡(

𝜕

𝜕𝑥𝑖1
|𝑝, … ,

𝜕

𝜕𝑥𝑖𝑟
|𝑝, 𝑤𝑝

𝑗1  , … 𝑤𝑝
𝑗𝑠)  . 

Where{𝑤𝑝
1, … , 𝑤𝑝

𝑛} is the dual basis of the canonical basis of the space𝑇𝑝(𝑀) at the point ∈

𝑀 . 
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7-Grassman algebra of smooth manifold. 

Operator of exterior differentiation . 

      Let 𝑇∗(𝑉) = ⨁𝑟=0
∞ 𝜏𝑟

0(𝑉) be the covariant tensor algebra of reflexive K-module  V . In 

the module 𝜏𝑟
0(𝑉) acts symmetric group 𝑠𝑟 of order  r  (permetation group) as the following: 

If  module  𝑡 ∈ 𝜏𝑟
0(𝑉), ℴ ∈ 𝑠𝑟  , then(ℴ𝑡)(𝑥1,…,𝑥𝑟) = 𝑡(𝑥ℴ(1), … , 𝑥ℴ(𝑟)). 

Definition: 

      The tensor  𝑡 ∈ 𝜏𝑟
0(𝑉) is called a symmetric, if ∀ ℴ ∈ 𝑠𝑟 ,then ℴ𝑡 = 𝑡 and the tensor 𝑡 ∈

𝜏𝑟
0(𝑉) is called antisymmetric if for each ℴ ∈ 𝑠𝑟, then ℴ𝑡 = ℰ(ℴ) where ℰ(ℴ) is the sign of 

permetation  which equal to  1 for even permetation and  -1 for odd permetation: 

ℰ(ℴ)={
1  𝑖𝑓  ℴ 𝑒𝑣𝑒𝑛 
−1  𝑖𝑓  ℴ 𝑜𝑑𝑑

 

Note: 

      Clearly that the symmetric and antisymmetric tensors are submodules of the module 

𝜏𝑟
0(𝑉) and we will denote them by 𝑆𝑟(𝑉) and ∧𝑟 (𝑉) respectivly . 

Definition: 

      Define endomorphisims  𝑆𝑦𝑚  and  𝐴𝑙𝑡  of 𝜏𝑟
0(𝑉) as follows: 

𝑆𝑦𝑚(𝑡) =
1

𝑟!
∑ ℴ𝑡ℴ∈𝑠𝑟   ; 𝐴𝑙𝑡 =  

1

𝑟!
∑ 𝜀(ℴ)𝑡ℴ∈𝑠𝑟  . 

Which are projections ;on modules 𝑆𝑟(𝑉) and ∧𝑟 (𝑉) respectivly , and are called symmetric 

and alterative operators .Define an operation as follows: 

∧:∧𝑟 (𝑉) ×∧𝑆 (𝑉) ⟶∧𝑟+𝑠 (𝑉) . 

If 𝑤1 ∈∧𝑟 (𝑉) , 𝑤2 ∈∧𝑆 (𝑉) , then 𝑤1 ∧ 𝑤2 ∈∧𝑟+𝑠 (𝑉) which is defined by the form: 

𝑤1 ∧ 𝑤2 =
(𝑟 + 𝑠)!

𝑟! 𝑠!
𝐴𝑙𝑡(𝑤1⨂𝑤2) . 

Proposition: 

      Prove that : 

1) (𝑤1 +𝑤2) ∧ 𝑤3 = 𝑤1 ∧ 𝑤3 +𝑤2 ∧ 𝑤3; 

2) 𝑤1 ∧ (𝑤2 +𝑤3) = 𝑤1 ∧ 𝑤2 +𝑤1 ∧ 𝑤3; 
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3) 𝑤1 ∧ (𝑤2 ∧ 𝑤3) = (𝑤1 ∧ 𝑤2) ∧ 𝑤3  . 

Definition:  

      The operator ∧ is called an exterior product . 

Let ∧ (𝑉) = ⨁𝑟=0
∞ ⋀𝑟(𝑉) , where ∧0 (𝑉) = 𝐾 , and ∧1 (𝑉) = 𝑉

∗ . 

∧ (𝑉) with operation ∧ is called an exterior algebra . 

Remark: 

      If ∧𝑟 (𝑉) , then, 𝑤:𝑉 × …× 𝑉 ⟶ 𝐾⏟          
𝑟−𝑡𝑖𝑚𝑒𝑠

 , which is called a form of degree  r  or  r-form. 

Definition:  

      Let  V be an n-dimensional linear space over a field  K ,{𝑒1, … , 𝑒𝑛} be a basis of  V , then 

the  r-forms:  

𝑒𝑖1 ∧ …∧ 𝑒𝑖𝑟 are basis of the module ∧𝑟 (𝑉) . The coordinates {𝑤𝑖1,…,𝑖𝑟} of  r-form 𝑤 ∈∧𝑟 (𝑉) 

, in this basis, considens  with it is components, i.e. 

𝑤𝑖1,…,𝑖𝑟 = 𝑤(𝑒𝑖1, … , 𝑒𝑖𝑟) 

Clearly that  dim∧𝑟 (𝑉) = (
𝑛
𝑟
) =

𝑛!

𝑟!(𝑛−𝑟)!
 . 

Definition:  

      Suppose that  M is smooth manifold . Exterior algebra ∧ (𝑋(𝑀)) denoted by ∧ (𝑀) 

which is called a Grassman algebra of smooth manifold  M .It is elements are called 

differential form . 

 

Theorem: 

      Suppose that M  is a smooth manifold, then there exist a unique mapping: 

𝑑:∧ (𝑀) ⟶∧ (𝑀) 

With the following properties: 

1) 𝑑(∧𝑟 (𝑀) ⊂∧𝑟+1 (𝑀); 

2) 𝑑𝑓(𝑋) = 𝑋(𝑓); 

3) 𝑑 ∘ 𝑑 = 0; 
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4) 𝑑(𝑤1 ∧ 𝑤2) = 𝑑𝑤1 ∧ 𝑤2 + (−1)
𝑟𝑤1 ∧ 𝑑𝑤2 , 

Where 𝑤1 ∈∧𝑟 (𝑀) , 𝑤2 ∈∧ (𝑀) . 

 Definition: 

      The operator 𝑑 which has the above properties is called the operator exterior 

differentiation . 

Proposition: 

      Suppose that  M  is a smooth manifold , (𝑈, 𝜑) is a local chart with 

coordinates{𝑥1, … , 𝑥𝑛} on  M  and {
𝜕

𝜕𝑥1
, … ,

𝜕

𝜕𝑥𝑛
} is the canonical basis for the module 𝑋(𝑈) 

,then the differential 1-forms {𝑑𝑥1, … , 𝑑𝑥𝑛} is the dual basis of the canonical basis of 𝑋(𝑈) 

 

8- Smooth map,differential of smooth map.  

Proposition: 

      Suppose that  M  and  N are smooth manifolds, a map 𝜙:𝑀 ⟶ 𝑁  is called a smooth , 

if∀𝑓 ∈ 𝐶∞(𝑁) , then𝑓 ∘ 𝜙 ∈ 𝐶∞(𝑀). 

Remark: 

      The above definition equivalent to the following: 

A map 𝜙:𝑀 ⟶ 𝑁  is called a smooth , if for each chart (𝑈, 𝜑) on  M  and (𝑉, 𝜓) on  N  with 

coordinates {𝑥1, … , 𝑥𝑛} and {𝑦1, … , 𝑦𝑛} respectivly, then, the map : 

𝜓𝜊𝜙𝜊𝜑−1: 𝜑(𝑈) ⟶ 𝜓(𝑉) 

Is a smooth of  Eucledian  space . 

Note: 

      If the smooth map 𝜙 is the bijective such that the map 𝜙−1 is smooth, then the map 𝜙 is 

called a diffeomorphisim. 

Definition: 

      Let 𝑝 ∈ 𝑀, define a map: 

(𝜙∗)𝑝: 𝑇𝑝(𝑀) ⟶ 𝑇𝜙(𝑝)(𝑁) as follows: 



-13- 
 

  

Let ∈ 𝑇𝑝(𝑀) , (𝜙∗)𝑝(𝜉)(𝑓) = 𝜉(𝑓𝜊𝜙) ;𝑓 ∈ 𝐶
∞(𝑁). The map (𝜙∗)𝑝 is called a differential 

map of the smooth map 𝜙 .Note that (𝜙∗)𝑝(𝜉) ∈ 𝑇𝜙(𝑝)(𝑁) . 

9- 𝝓 − connection of vector fields. 

Definition: 

      Let  𝜙:𝑀 ⟶ 𝑁 be a smooth map, the vector fields 𝑋 ∈ 𝑋(𝑀) , 𝑌 ∈ 𝑋(𝑁) is called  ϕ −

 connection ,if ∀𝑓 ∈ 𝐶∞(𝑁) , 𝑡ℎ𝑒𝑛  𝑋(𝑓𝜊𝜙) = 𝑌(𝑓)𝜊𝜙 . 

Theorem: 

      The vector field 𝑋 and 𝑌 are ϕ− connection  iff ∀𝑝 ∈ 𝑀 , then (𝜙∗)𝑝𝑋𝑝 = 𝑌∅(𝑃) . 

Remark: 

      We will dente by 𝑌 = 𝜙∗𝑋. 

Definition: 

       The vector field 𝑌 = 𝜙∗𝑋 is called a dragging of the vector field 𝑋 with respect to the 

map  . 

H.W.:   

       If 𝑌1 = 𝜙∗𝑋1 and 𝑌2 = 𝜙∗𝑋2 ,  then, Prove that:[𝑌1, 𝑌2] = 𝜙∗[𝑋1,𝑋2] . 

Remark: 

      By the same way for the vector field ∈ 𝑋(𝑀) , we can define the dragging 𝜙∗𝑋 , where 

𝜙∗: 𝑋(𝑀) ⟶ 𝑋(𝑁) , then 𝜙∗
−1 = 𝜙∗: 𝑋(𝑁)  ⟶  𝑋(𝑀) which is called an anti-dragging of  

the vector field. 

 

10-Distribution and co distribution . 

Definition: 

      A sub module  D  of the module 𝑋(𝑀) is called a distribution on  M . The distribution  D 

is called  r-dimensional , if there exist atlas on  M such that each chart (𝑈, 𝜑), then, 

𝐷|𝑈 = {𝑋|𝐷 ∶ 𝑋 ∈ 𝐷} 

Is a module of  r-dimension . 
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Remark: 

The giving of r-dimensional distribution on  M is equivalent to the giving the family {𝐷𝑃 ⊂

𝑇𝑃(𝑀): 𝑑𝑖𝑚𝐷𝑝 = 𝑟} . 

Definition: 

      A sub module  C of the module 𝑋∗(𝑀) is called a codistribution . 

Definition: 

      Suppose that  D  is the distribution on  M .The sub module : 

𝐶𝐷 = {𝑤 ∈∧1 (𝑀):𝑤(𝑋) = 0 , ∀ 𝑋 ∈ 𝐷}. 

Is called a codistribution associated with the distribution  . 

Theorem: 

      If  M  is an  n-dimensional smooth manifold , and 𝑑𝑖𝑚𝐷 = 𝑟, then, 𝑑𝑖𝑚𝐶𝐷 = 𝑛 − 𝑟 . 

Proof: 

      Suppose that {𝑋1, … , 𝑋𝑟} is a local basis for the distribution  D . Compelet this basis to 

the basis {𝑋1, … , 𝑋𝑛} for the module 𝑋(𝑀). Let {𝑤1, … , 𝑤𝑛} be a dual basis . Let 𝑤 ∈

𝑋∗(𝑀), then, 

𝑤 = ∑ 𝑎𝑖𝑤
𝑖𝑛

𝑖=1  , where 𝑎𝑖 = 𝑤(𝑋𝑖). We have : 

𝑤 ∈ 𝐶𝐷 iff  𝑤(𝑋) = 0 , ∀ 𝑋 ∈ 𝐷 iff 𝑎𝑘 = 𝑤(𝑋𝑘) = 0 , 𝑘 = 1,… , 𝑟. 

Then we get = 𝑎𝑟+1𝑤
𝑟+1 +⋯+ 𝑎𝑛𝑤

𝑛 , since the form {𝑤𝑟+1, … , 𝑤𝑛} are linearly 

independent, then are will be basis of the module 𝐶𝐷. 

Therefore, 𝑑𝑖𝑚 𝐶𝐷 = 𝑛 − 𝑟. 

11-Sub manifold of smooth manifold. 

Definition: 

      Suppose that 𝜙:𝑁 ⟶ 𝑀 is a smooth function , the rank of 𝜙 at 𝑝 ∈ 𝑁 is the rank of 

the(𝜙∗)𝑝: 𝑇𝑝(𝑁) ⟶ 𝑇𝜙(𝑝)(𝑀). The dimension of range (𝜙∗)𝑝 is called the rank of (𝜙∗)𝑝. 

Definition: 

      A smooth map  𝜙:𝑁 ⟶ 𝑀 is called an immersion if it is rank equal to the dimension of  

N . 
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Definition: 

      Suppose that  𝜙:𝑁 ⟶ 𝑀 is a smooth map, if 𝜙 is an immersion, then we say that the pair 

(𝑁, 𝜙) is an immbeding sub manifold. In this case, if  𝜙 is an injective, then the pair (𝑁, 𝜙)   

Is called a sub manifold of  M . 

      If (𝑁, 𝜙) is a sub manifold of   M ,such that the map 𝜙 is an open , then we say that 

(𝑁, 𝜙) is an inclusion sub manifold of  M and 𝜙 is called an inclusion map . 

Example: 

      Let 𝑁 = 𝐼 ⊂ ℝ , 𝛼𝑖: 𝐼 ⟶ 𝑀 is a smooth curve ; i=1,2,3  , which are defined as following 

diagrams: 

 𝛼3  

 𝛼2 

 𝛼1 

 ℝ………………....     ….. 

                       I 𝛼1(𝑡) 𝛼2(𝑡) 𝛼3(𝑡)   

1) (𝐼, 𝛼1) is immbeding sub manifold , but not sub manifold ; 

2) (𝐼, 𝛼2) is sub manifold , but not inclusion sub manifold ; 

3) (𝐼, 𝛼3) is inclusion sub manifold . 

 

PART(2) : 

Lie group and Lie algebra . 

1-Lie group: 

Definition: 

      A Lie group is a group  G  which is al so smooth manifold such that, the map: 

𝜙:𝐺 × 𝐺 ⟶ 𝐺 

Which is defined by: 

𝜙(𝑥, 𝑦) = 𝑥. 𝑦−1 
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Is a smooth  ∀ 𝑥, 𝑦 ∈ 𝐺 . 

Proposition: 

      Suppose that 𝐺 is a Lie group,then an operation 𝛼: 𝐺 ⟶ 𝐺 and 𝛼(𝑥) = 𝑥−1 is a smooth . 

Proof: 

      The map 𝛼: 𝐺 ⟶ 𝐺 can be written as the form: 

𝑥:⟶⏞
𝑖𝑒

(𝑒, 𝑥)⟶⏞
𝜑

𝑒. 𝑥−1 = 𝑥−1 

Where  𝑒 is the identity element of  G. The map 𝛼 = 𝜑𝜊𝑖𝑒 is a smooth , since 𝑖𝑒and 𝜑 are 

smooth . 

Proposition: 

      The map 𝜇: 𝐺 × 𝐺 ⟶ 𝐺, where 𝜇(𝑥, 𝑦) = 𝑥. 𝑦 is a smooth . 

Proof :(H.W). 

Examples: 

1) The space ℝ𝑛 = {(𝑥1, … , 𝑥𝑛): 𝑥 ∈ ℝ} is a Lie group with respect to the operation 

+ . 

Solution: 

      Let𝑥 = (𝑥𝑖) , 𝑦 = (𝑦𝑖) ∈ ℝ
𝑛. 

(𝑥𝑖). (𝑦𝑖) = 𝑥𝑖 + 𝑦𝑖  , and (𝑥𝑖)
−1 = −𝑥𝑖  , then (𝑥, 𝑦) = 𝑥. 𝑦−1 = 𝑥𝑖 − 𝑦𝑖 . 

Therefore, the map 𝜑 gives a smooth maps 𝑢𝑖 = 𝑥𝑖 − 𝑦𝑖  , 𝑖 = 1,… , 𝑛 . 

Hence, 𝜑 is a smooth map which means that ℝ𝑛 is a Lie group . 

2) ℂ∗ = {𝑧 ∈ ℂ ; 𝑧 ≠ 0} , is a Lie group with respect to the complex product 

operation . 

Solution: 

      Let 𝑧1 = 𝑥1 + 𝑖𝑦1 , 𝑧2 = 𝑥2 + 𝑖𝑦2 ; 𝑧 = 𝑥 + 𝑖𝑦 ∈  ℂ , then, 

𝑧1. 𝑧2 = (𝑥1𝑥2 − 𝑦1𝑦2) + 𝑖(𝑥1𝑦2 + 𝑥2𝑦1) ,𝑧
−1 =

𝑥−𝑖𝑦

𝑥2+𝑦2
  . 

𝜑(𝑧1, 𝑧2) = 𝑥1 + 𝑖𝑦1
𝑥2−𝑖𝑦2

𝑥2
2−𝑦2

2 =
𝑥1𝑥2+𝑦1𝑦2

𝑥2
2+𝑦2

2 + 𝑖
−𝑥1𝑦2+𝑦1𝑥2

𝑥2
2+𝑦2

2 , 
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The map 𝜑 gives a smooth functions , 

𝑢1 =
𝑥1𝑥2 + 𝑦1𝑦2

𝑥2
2 + 𝑦2

2   , 𝑢2 =
−𝑥1𝑦2 + 𝑦1𝑥2

𝑥2
2 + 𝑦2

2  . 

3) Let 𝐺1 and 𝐺2 be a Lie groups, then the smooth manifold: 

𝐺1 × 𝐺2 ={(𝑔1, 𝑔2): 𝑔1 ∈ 𝐺1 ∧ 𝑔2 ∈ 𝐺2} 

Is a Lie group with respect to components of groups operation: 

(𝑔1, 𝑔2). (ℎ1, ℎ2) = (𝑔1ℎ1, 𝑔2ℎ2); 

(𝑔1, 𝑔2)
−1 = (𝑔1

−1, 𝑔2
−1). 

 

 

Karatan's theorem : 

      Suppose that  𝐺  is a Lie group, 𝐴 ⊂ 𝐺 is a closed sub group of  , then 𝐴 is a Lie group . 

4) Let 𝑆1 = {𝑧 ∈ ℂ∗: |𝑧| = 1} , (𝑆1 ⊂ ℂ∗) 

Solution: 

      If 𝑧1, 𝑧2 ∈ 𝑆
1  ⟹ |𝑧1. 𝑧2| = |𝑧1|. |𝑧2| = (1)(1) = 1, thus 𝑧1. 𝑧2 ∈ 𝑆

1 . 

If 𝑧 ∈ 𝑆1 ⟹ |𝑧−1| =
1

|𝑧|
=
1

1
= 1, thus 𝑧−1 ∈ 𝑆1, 

Therefore, 𝑆1 is a sub group of  ℂ∗. 

Let {𝑧𝑛} be a sequence in 𝑆1 and lim
𝑛⟶∞

𝑧𝑛 = 𝑧 ,  

So |𝑧| = | lim
𝑛⟶∞

𝑧𝑛| = lim
𝑛⟶∞

| 𝑧𝑛| = lim
𝑛⟶∞

1 =1. 

Thus, 𝑧 ∈ 𝑆1 , therefore 𝑆1 is closed . 

Hence , by Karatan's theorem , we get that 𝑆1 is a Lie group . 

5) General linear group . 

GL(n,ℝ) = {𝐴 = (𝑎𝑖𝑗) ∈ 𝑀𝑛,𝑛: 𝑑𝑒𝑡𝐴 ≠ 0} . 

 

Solution: 

      Clearly that 𝐺𝐿(𝑛,ℝ) is open sub set in 𝑀𝑛,𝑛 ≅ (ℝ
𝑛)2 , then, 𝐺𝐿(𝑛, ℝ) is a smooth 

manifold and group .  
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𝜑:𝐺𝐿(𝑛,ℝ) × 𝐺𝐿(𝑛, ℝ) ⟶ 𝐺𝐿(𝑛,ℝ) 

𝜑(𝐴, 𝐵) = 𝐴. 𝐵−1 = 𝐶 = (𝑐𝑖𝑗) 

𝑐𝑖𝑗 =∑𝑎𝑖𝑘(𝐵𝑘𝑗)
−1

𝑛

𝑘=1

=∑𝑎𝑖𝑘
(−1)𝑘+𝑗∆𝑗𝑘
𝑑𝑒𝑡𝐵

𝑛

𝑘=1

=∑
(−1)𝑘+𝑗𝑎𝑖𝑘∆𝑗𝑘

𝑑𝑒𝑡𝐵

𝑛

𝑘=1

 

Where ∆𝑗𝑘 is the complement of  𝐵𝑘𝑗 , 

Clearly that 𝑐𝑖𝑗 are smooth functions, therefore, 𝜑 is a smooth . 

Hence, 𝐺𝐿(𝑛,ℝ) is a Lie group. 

6) Orthogonal group of order  n . 

𝑂(𝑛,ℝ) = {𝐴 ∈ 𝐺𝐿(𝑛, ℝ): 𝐴−1 = 𝐴𝑇} 

Then, by Karatan's theorem,  𝑂(𝑛,ℝ) is a Lie group . 

7) Unimodule group  𝑆𝐿(𝑛,ℝ) = {𝐴 ∈ 𝐺𝐿(𝑛,ℝ): 𝑑𝑒𝑡𝐴 = 1} ; 

8) Spicial orthogonal group 𝑆𝑜𝐿(𝑛,ℝ) =  𝑂(𝑛, ℝ) ∩ 𝑆𝐿(𝑛,ℝ) ; 

9) Complex general linear group 𝐺𝐿(𝑛, ℂ) = {𝐶 = (𝑐𝑖𝑗): 𝑐𝑖𝑗 ∈ ℂ ; 𝑑𝑒𝑡𝐶 ≠ 0} ; 

10) Complex orthogonal group (𝑛, ℂ) = {𝐶 ∈ 𝐺𝐿(𝑛, ℂ): 𝐶−1 = 𝐶𝑇} ; 

             11) Complex unimodule group  𝑆𝐿(𝑛, ℂ) = {𝐶 ∈ 𝐺𝐿(𝑛, ℂ): 𝑑𝑒𝑡𝐶 = 1} ; 

12) Complex orthogonal unimodule group 𝑆𝑜𝐿(𝑛, ℂ) =  𝑂(𝑛, ℂ) ∩ 𝑆𝐿(𝑛, ℂ) ; 

13) Unitary group (𝑛) = {𝐶 ∈ 𝐺𝐿(𝑛, ℂ): 𝐶−1 = 𝐶−𝑇}. 

Realization of general complex group. 

GL(n, ℂ)ℝ = {𝐴 ∈ 𝑀2𝑛,2𝑛: 𝐴 ∘ 𝐽 = 𝐽 ∘ 𝐴}. 

Where  𝐽 = (
0 −𝐼𝑛
𝐼𝑛 0

) , it is easy to check that  𝐽2 = −𝐼2𝑛 , 

𝐽2 =  𝐽. 𝐽 = (
0 −𝐼𝑛
𝐼𝑛 0

) . (
0 −𝐼𝑛
𝐼𝑛 0

) = (
−𝐼2𝑛 0
0 −𝐼2𝑛

) . 

Let ∈  GL(n, ℂ)ℝ; 𝐴 = (
𝐴1 𝐴2
𝐴3 𝐴4

) , then,  
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𝐴 ∘ 𝐽 =  𝐽 ∘ 𝐴 ⟹ (
𝐴1 𝐴2
𝐴3 𝐴4

) ∘ (
0 −𝐼𝑛
𝐼𝑛 0

) = (
0 −𝐼𝑛
𝐼𝑛 0

) ∘ (
𝐴1 𝐴2
𝐴3 𝐴4

) ⟹ 𝐴2 = −𝐴3 , 𝐴1 =

 𝐴4. Therefore, we get = (
𝐴1 𝐴2
−𝐴2 𝐴1

) . 

If 𝐶 = 𝐴 + √−1 𝐵  then, = (
𝐴 −𝐵
𝐵 𝐴

) . 

GL(n, ℂ)ℝ ⊂ 𝐺𝐿(2𝑛, ℝ),closed sub group, and then by Karatan's theorem it will be Lie 

group. 

Proposition: 

     𝐺𝐿(𝑛, ℂ) ≅ GL(n, ℂ)ℝ . 

Solution: 

      Define 𝜑: 𝐺𝐿(𝑛, ℂ) ⟶ GL(n, ℂ)ℝ as : 

If = (𝑐𝑖𝑗) ∈  𝐺𝐿(𝑛, ℂ) , where (𝑐𝑖𝑗) = 𝛼𝑖𝑗 + √−1 𝛽𝑖𝑗,  

Consider matrices 𝐴 = (𝛼𝐼𝐽) and  𝐵 = (𝛽𝑖𝑗) ∈  GL(n, ℂ)
ℝ , 

And  𝐶 = (𝐴 + √−1 𝐵) ∈  𝐺𝐿(𝑛, ℂ) , then  𝜑(𝐴 + √−1 𝐵) = (
𝐴 −𝐵
𝐵 𝐴

)) ∈  GL(n, ℂ)ℝ. 

Prove that 𝜑 is an isomorphisim . 

Semi – direct product of Lie grops. 

      Let     𝐺 = 𝐺𝐿(𝑛, ℝ) and 𝐻 = ℝn are be Lie groups .we know that 𝑀 = 𝐺 × 𝐻 has Lie 

group structure , this Lie group is the direct product of Lie groups.But there is another Lie 

group structure : 

      Let (𝐴, 𝑋), (𝐵, 𝑌)  ∈  𝐺𝐿(𝑛,ℝ) × ℝn , define the operation ∗ by: 

(𝐴, 𝑋) ∗  (𝐵, 𝑌) = (𝐴𝐵, 𝐴𝑌 + 𝑋)  and (𝐴, 𝑋)−1 = (𝐴−1, −𝐴−1𝑋). 

Directly, from this operation we can prove that 𝑀 = 𝐺 × 𝐻 is a group (check). 

Define 𝜑:𝑀 ×𝑀 ⟶ 𝑀 by: 

𝜑((𝐴, 𝑋), (𝐵, 𝑌 ))= (𝐴, 𝑋) ∗ (𝐵, 𝑌)−1 = (𝐴, 𝑋) ∗ (𝐵−1, −𝐵−1𝑌) = (𝐴𝐵−1, , −𝐴𝐵−1𝑌 + 𝑋). 

Then we get that 𝜑 is a smooth map .Threfore, 𝐺𝐿(𝑛,ℝ) ⋊ ℝn is a Lie group , and is called a 

semi- direct product of Lie groups 𝐺𝐿(𝑛,ℝ) 𝑎𝑛𝑑  ℝn . 
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2- Lie algebra . 

 

Definition: 

     A space 𝒢 over a field 𝔽 is called a Lie algebra if the binary operation , [. , . ]: 𝒢 × 𝒢 ⟶ 𝒢 

Satisfies the following properties : 

1) [𝑋, 𝑌] = −[𝑌, 𝑋]; 

2) [[𝑋, 𝑌], 𝑍] + [[𝑌, 𝑍], 𝑋] + [[𝑍, 𝑋], 𝑌] = 0  . 

Note: 

      We will assume that = ℝ . 

Examples: 

1)  suppose that  M  is a smooth manifold , then the module 𝑋(𝑀) is a Lie algebra under 

operation :   

[𝑋, 𝑌] = 𝑋𝜊𝑌 − 𝑌𝜊𝑋 ; 𝑋, 𝑌 ∈ 𝑋(𝑀) . 

2) Every arthemetic linear space  V is a Lie algebra with [𝑋, 𝑌] = 0 , 𝑋, 𝑌 ∈ 𝑉 . 

3) Every associative algebra  A is a Lie algebra with respect to the operation : 

[𝑋, 𝑌] = 𝑋. 𝑌 − 𝑌. 𝑋 ;  𝑋, 𝑌 ∈ 𝐴 . 

 

In particular, the general matrix algebra [𝐴, 𝐵]𝐴. 𝐵 − 𝐵. 𝐴  ; 𝐴, 𝐵 ∈ 𝑀𝑛,𝑛 

Where    .     is the product matrix operation .  

3- Lie algebra of Lie group . 

Definition:   

      Let  G be a Lie group , 𝑔 ∈ 𝐺, define maps : 

𝐿𝑔: 𝐺 ⟶ 𝐺 and  𝑅𝑔: 𝐺 ⟶ 𝐺 by 𝐿𝑔(ℎ) = 𝑔. ℎ , 𝑅𝑔(ℎ) = ℎ. 𝑔  

𝐿𝑔 is called a left shift to element 𝑔 . 

𝑅𝑔 is called a right shift to element 𝑔. 
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The maps 𝑅𝑔 and 𝐿𝑔 are a smooth maps have the following properties : 

1) 𝐿𝑔𝜊𝐿ℎ = 𝐿𝑔ℎ ∶ 𝐺 ⟶ 𝐺 ; 𝑔, ℎ ∈ 𝐺 . 

(𝐿𝑔𝜊𝐿ℎ)(𝑝) = 𝐿𝑔(𝐿ℎ(𝑝)) = 𝐿𝑔(ℎ𝑝) = 𝑔(ℎ𝑝) = (𝑔ℎ)𝑝 = 𝐿𝑔ℎ(𝑝) . 

Therefore , 𝐿𝑔𝜊𝐿ℎ = 𝐿𝑔ℎ . 

2) 𝑅𝑔𝜊𝑅ℎ = 𝑅ℎ𝑔 , (𝐻.𝑊). 

3) The maps 𝐿𝑔 and 𝑅𝑔 are diffeomorphisim . This can be get directly from,  

∀𝑔 ∈ 𝐺 , (𝐿𝑔)
−1 = 𝐿𝑔−1 and (𝑅𝑔)

−1 = 𝑅𝑔−1 , 

Then, 𝐿𝑔𝜊(𝐿𝑔)
−1 = 𝐿𝑔𝜊𝐿𝑔−1 = 𝐿𝑔𝜊𝑔−1 = 𝐿𝑒 , where 𝑒 is the identity element of 𝐺, 

i.e 𝐿𝑒 (𝑔) =  𝑒. 𝑔 = 𝑔 . 

By the same way , we have:  

(𝐿𝑔)
−1𝜊𝐿𝑔 = 𝐿𝑔−1𝜊𝐿𝑔 = 𝐿𝑔−1𝑔 = 𝐿𝑒 . 

Therefore, we get that 𝐿𝑔 is isomorphisim, and since 𝐿𝑔 , 𝐿𝑔−1 are differentiables (smooth), 

then we get that 𝐿𝑔 is diffeomorphisim . 

Definition: 

      A vector field 𝑋 ∈ 𝑋(𝐺) is called a left invariant ,𝑖𝑓 ∀𝑔 ∈ 𝐺, then (𝐿𝑔)∗𝑋 = 𝑋, where 

(𝐿𝑔)∗: 𝑋(𝐺) ⟶ 𝑋(𝐺) is the differential map of the smooth map 𝐿𝑔: 𝐺 ⟶ 𝐺 . 

Theorem: 

      A set 𝒢 of all left invariant vector fields on Lie group 𝐺 is a linear space which is 

isomorphic to the tangent space 𝑇𝑒(𝐺) of Lie group 𝐺 at the identity. 

 Inparticular, 𝑖𝑚 𝒢 = 𝑑𝑖𝑚 𝐺 . 

Definition: 

      The Lie algebra 𝒢(𝐺) of all left invariant vector fields of Lie group 𝐺 is called a Lie 

algebra of Lie group. 

Proposition: 

      The linear space 𝒢 of all left invariant vector fields of Lie group 𝐺 is a Lie algebra with 

respect to the commutator operation of vector fields. 

Proof: (H.W) . 
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4-Homomorphisim of Lie groups and Lie algebras . 

Definition: 

      A map 𝜑:𝐺 ⟶ 𝐻 of  Lie groups is called a homomorphisim of Lie groups if: 

1) 𝜑 is smooth ; 

2) 𝜑(𝑥, 𝑦) = 𝜑(𝑥)𝜑(𝑦) , 𝑥, 𝑦 ∈ 𝐺 . 

Definition: 

      A ma 𝜙: 𝒢 ⟶ 𝒽 of Lie algebras is called a homomorhpisim of algebras if: 

1) 𝜙 is a linear map ; 

2) 𝜙[𝑋, 𝑌] = [𝜙𝑋, 𝜙𝑌] ;  𝑋, 𝑌 ∈ 𝒢 . 

 

5-The action of Lie group on a smooth manifold.  

Definition: 

      Let 𝐺 be a Lie group and 𝑀 be a smooth manifold, we say that 𝐺 act differentially on  𝑀 

of the left, if there exist a smooth map 𝜑: 𝐺 ×𝑀 ⟶ 𝑀 which satisfies the following 

conditions: 

1) ∀𝑔 ∈ 𝐺, the map 𝜑𝑔:𝑀 ⟶ 𝑀 which defined by 𝜑𝑔(𝑚) = 𝜑(𝑔,𝑚) = 𝑔𝑚 is 

diffeomorphisim. 

2) 𝜑𝑔ℎ(𝑚) = 𝜑𝑔𝜊𝜑ℎ(𝑚) = 𝜑𝑔(𝜑ℎ(𝑚)) = 𝑔(ℎ𝑚).∀𝑔, ℎ ∈ 𝐺,𝑚 ∈ 𝑀 . 

Note that 𝜑𝑒(𝑚) = 𝑒𝑚 = 𝑚 where 𝑒 is the identity element of 𝐺. 

Definition: 

      We say that 𝐺 acts effectively if satisfies : If 𝜑𝑔(𝑚) = 𝑚 , ∀𝑚 ∈ 𝑀 then 𝑔 =  𝑒. 

And we say that 𝐺 acts freely , if 𝜑𝑔(𝑚) = 𝑚 for some 𝑚 ∈ 𝑀, then 𝑔 =  𝑒. 

 

Definition: 

      The Lie group 𝐺 act on 𝑀 of the right , if there exist a smooth map 𝜑:𝑀 × 𝐺 ⟶ 𝑀 

which satisfies the following conditions : 

1) ∀𝑔 ∈ 𝐺, the map 𝜑𝑔:𝑀 ⟶ 𝑀 which defined by 𝜑𝑔(𝑚) = 𝜑(𝑚, 𝑔) = 𝑚𝑔 is 

diffeomorphisim. 

2) 𝜑𝑔ℎ(𝑚) = 𝜑ℎ𝜊𝜑𝑔(𝑚) = 𝜑ℎ (𝜑𝑔(𝑚)) = 𝜑ℎ(𝑚𝑔) = (𝑚𝑔)ℎ , ∀𝑔, ℎ ∈ 𝐺,𝑚 ∈ 𝑀 . 

Example: 
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      Suppose that V is n-dimensional linear space , denoted by 𝛽 to the set of all basis of  V . 

The Lie group 𝐺𝐿(𝑛,ℝ) acts on 𝛽 of the right as the follows: 

Let = (𝑒1, … , 𝑒𝑛) ∈  𝛽 , 𝑔 = (𝑔𝑗
𝑖) ∈  𝐺𝐿(𝑛,ℝ) .  

Put 𝜑𝑔(𝑏) = (𝑔1
𝑖1𝑒𝑖1 , … , 𝑔𝑛

𝑖𝑛𝑒𝑖𝑛) . 

We know that 𝜀𝑖 = 𝑔𝑖
𝑗
𝑒𝑗, (𝑖 = 1,… , 𝑛) , 

Where (𝑔𝑖
𝑗
) is the transition matrix from the basis { 𝑒1, … , 𝑒𝑛} to the basis {𝜀1, … , 𝜀𝑛}  

𝜑𝑔(𝑏) ∈  𝛽 

Clearly that 𝜑𝑔 is bijective and the diffeomorphisim. 

Let , ℎ ∈  𝐺𝐿(𝑛, ℝ) , then, 

𝜑ℎ𝜊𝜑𝑔(𝑏) = 𝜑ℎ𝜊𝜑𝑔(𝑒1, … , 𝑒𝑛) 

= 𝜑ℎ(𝜀1, … , 𝜀𝑛) = (ℎ1
𝑖1𝜀𝑖1 , … , ℎ𝑛

𝑖𝑛𝜀𝑖𝑛) 

= (ℎ1
𝑖1𝑔𝑖1

𝑗1𝑒𝑗1 , … , ℎ𝑛
𝑖𝑛𝑔𝑖𝑛

𝑗𝑛𝑒𝑗𝑛) 

= ((𝑔ℎ)1
𝑗1𝑒𝑗1 , … , (𝑔ℎ)𝑛

𝑗𝑛𝑒𝑗𝑛) 

= 𝜑𝑔ℎ(𝑏) 

Therefore, 𝜑𝑔ℎ = 𝜑ℎ𝜊𝜑𝑔 . 

Then the Lie group 𝐺𝐿(𝑛,ℝ) acts on 𝛽 on the right . 

 

 

)3(PART 

Princible fiber bundle space . 

1- Princible fiber bundle. 

Definition: 

      Suppose that the Lie group 𝐺 acts on smooth manifold 𝑀 then for each 𝑚 ∈ 𝑀 generates 

a map  𝛿𝑚: 𝐺 ⟶ 𝑀, such that , for each 𝑔 ∈ 𝐺 , 𝛿𝑚(𝑔) = 𝜑𝑔(𝑚). 
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The image of 𝛿𝑚called an orbit of the point 𝑚 ∈ 𝑀 .The set of all orbit will be denoted by 

𝑂𝑟𝑏𝐺𝑀 which is a smooth manifold . 

Definition: 

      A princible fiber bundle is a set of four (𝑃,𝑀, Π, 𝐺) , where 𝑃 is a smooth manifold, and 

𝐺 is a Lie group which is acts freely on 𝑃 of the right , 𝑀=𝑂𝑟𝑏𝐺  𝑃  is the space of the orbits. 

Π: 𝑃 ⟶ 𝑀, is a projection (which is smooth), such that the following are satisfies: 

      There is an open cover 𝑈 of 𝑀, such that , 

∀𝑢 ∈ 𝑈, ∃ 𝐹𝑢: Π
−1 (𝑈) ⟶ 𝐺               

Where (𝐹𝑢 is a smooth map) satisfies the conditions: 

1) 𝐹𝑢(𝑝𝑔) = 𝐹𝑢(𝑝)𝑔 ; (𝑝 ∈ 𝑃, 𝑔 ∈ 𝐺); 
2) The map 𝜓𝑢: 𝐹𝑢: Π

−1 (𝑈) ⟶ 𝑈 × 𝐺 satisfies: 

𝜓𝑢(𝑝) = (Π(𝑝), 𝐹𝑢(𝑝)) is diffeomorphisim. 

𝑃: is called a fiber space (total space); 

𝐺: is called a structure group; 

𝑀: is called a basis of fiber bundle; 

Π: is called a canonical projection; 

∀𝑚 ∈ 𝑀 , Π−1(m) is called a fiber over m . 

 

 

 

                             𝐺                    𝐹𝑈                       Π
−1(𝑈)         𝑃 

 

                                            𝜓𝑈                                                   Π 

                         𝑈 × 𝐺                        

                                                                                   𝑈                 𝑀 
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Example: 

      Consider (𝑃,𝑀, Π1, 𝐺), where 𝑀 and 𝐺 smooth manifold and Lie group respectivly.  

𝑃 = 𝑀 × 𝐺 ;  Π1: 𝑀 × 𝐺 ⟶ 𝑀 is the projection on the first factor (Π1(𝑚, 𝑔) = 𝑚). The Lie 

group 𝐺 acts on 𝑃 of the right as follows: 

𝜑ℎ(𝑚, 𝑔) = (𝑚, 𝑔)ℎ = (𝑚, 𝑔ℎ). 

This action is freely because if  𝜑ℎ(𝑚, 𝑔) = (𝑚, 𝑔), so(𝑚, 𝑔ℎ) = (𝑚, 𝑔), then, 𝑔ℎ = 𝑔 and 

thus ℎ = 𝑒 . 

Now: suppose that the open cover 𝑢 consist of element 𝑈 = 𝑀. 

1) 𝐹𝑈(𝑝) = 𝐹𝑈(𝑚, 𝑔) = 𝑔 = Π2(p) ⇒ 𝐹𝑈 = Π2; 

 

𝐹𝑈(𝑝𝑔) = 𝐹𝑈((𝑚, ℎ)𝑔) = 𝐹𝑈(𝑚, ℎ𝑔) = Π2(𝑚, ℎ𝑔) = ℎ𝑔 = Π2(𝑝)𝑔 = 𝐹𝑈(𝑝)𝑔; 

2) 𝜓𝑈 is diffeomorphisim .  
 
 
 
 

                                                   Π2 

  𝐺               𝐹U                          𝛱1(𝑈)                   𝑀 × 𝐺 = 𝑃 

 

 𝜓𝑈 

 𝑈 × 𝐺             .           𝑀 = 𝑈  

 

 

Definition: 

      Suppose that 𝛽1(𝑃1, 𝑀, Π1, 𝐺1) and 𝛽2(𝑃2, 𝑀, Π2, 𝐺2) are two fiber bundle spaces, a 

homomorphisim fiber bundle from 𝛽1 to 𝛽2 is a pair (𝑓, 𝜌) , where 𝑓: 𝑃1 ⟶ 𝑃2 is a smooth 

map and 𝜌: 𝐺1⟶ 𝐺2 is a homomorphisim of Lie groups such that: 
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1) The following diagram is commutative,  

𝑃1           𝑓          𝑃2          

  Π1                  Π2         

𝑀          

2) ∀𝑝 ∈ 𝑃1 and ∀𝑔 ∈ 𝐺1,then 𝑓(𝑝𝑔) = 𝑓(𝑝)𝜌(𝑔). 

In particular, if  (𝑃1, 𝑓) is a sub manifold of 𝑃2, and (𝐺1, 𝜌) is a Lie sub group of  𝐺2, then, 

𝛽1 is called a sub fiber bundle of  𝛽2 . 

Note: 

      Another important case, if 𝑓 is a diffeomorphisim, and 𝜌 is an isomorphisim of Lie 

groups, then the pair (𝑓, 𝜌) is called an isomorphisim of principle fiber bundles, or we say 

that 𝛽1 and 𝛽2 are equivalent principle fiber bundles . 

 

Structure equation of principle fiber bundle . 

a-Introduction:- 

Definition: 

      A smooth map 𝜙:𝑀 ⟶ 𝑁 is called submersion if its rank equal to the dimension of  𝑁. 

Theorem ∗ :    

      Suppose that 𝛽 = (𝑃,𝑀,Π, 𝐺), is a principle fiber bundle, then the map Π:𝑃 ⟶ 𝑀…… ... 

Definition: 

      Suppose that 𝛽 = (𝑃,𝑀,Π, 𝐺), is a principle fiber bundle ,denote by 𝑋Π(𝑃) to the space 

of vector field of  𝑃 , such that if its Π-connection with the vector fields on 𝑀 , i.e. 

𝑋Π(𝑃) = {𝑋 ∈ 𝑋(𝑃): ∃𝑌 ∈ 𝑋(𝑀): Π∗𝑋 = 𝑌}. 

      Denote by 𝒱̃ = 𝑘𝑒𝑟Π∗ , then on 𝑃 appear distribution 𝒱 = 𝐶∞(𝑃)⨂𝒱̃, i.e. 

𝒱 = {∑𝑓𝑖 𝑋𝑖: 𝑓𝑖 ∈ 𝐶
∞(𝑃), 𝑋𝑖 ∈ 𝒱̃} . 

      The distribution 𝒱 is called a vertical distribution on  . 

Note: According to theorem ∗  , we have, if  𝑝 ∈ 𝑃 any point, then,  

𝑑𝑖𝑚𝒱𝑝 =  𝑑𝑖𝑚𝒱̃𝑝 = dim𝑘𝑒𝑟(Π∗)𝑝 = 𝑑𝑖𝑚𝑇𝑝(𝑃) − 𝑟𝑎𝑛𝑘(Π∗)𝑝 = 𝑑𝑖𝑚𝑃 − 𝑑𝑖𝑚𝑀 . 
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Fundamental Lie algebra.  

Definition: 

    Suppose that a Lie group 𝐺 acts on  𝑃 (of the right), then defined a map : 
𝜆: 𝒢 ⟶ 𝑋(𝑃) 

(since, if 𝐺 acts on  𝑃, then 𝛿𝑝: 𝐺 ⟶ 𝑃 is an orbit which is a smooth map). 

The map 𝜆 generate vector field 𝑋′=𝜆(𝑋)  ∈ 𝑋(𝑃), 𝜆 is called a homomorphisim of Lie 

algebras, i.e : 

𝜆([𝑋, 𝑌]) = [𝜆𝑋, 𝜆𝑌] 

The image of 𝜆 is a Lie sub algebra 𝒻 ⊂ 𝑋(𝑃), its elements are called fundamental vector 

fields on 𝑃. The Lie algebra 𝒻 is called a fundamental Lie algebra of vector fields on  . 

Remark:  

      The Lie algebra 𝒻 generates sub module ℱ = 𝐶∞(𝑃)⨂𝒻 of the module 𝑋(𝑃), i.e: 

ℱ = {∑𝑓𝑖𝑋𝑖 ∶  𝑓𝑖 ∈ 𝐶
∞(𝑃), 𝑋𝑖 ∈  𝒻}. 

Proposition: 

      The map 𝜆: 𝒢 ⟶  𝒻 is an isomorphisim . 

Theorem:  

      The distribution 𝒱 and ℱ on the 𝑃 are concides and 𝑑𝑖𝑚𝐺 = 𝑑𝑖𝑚𝑃 − 𝑑𝑖𝑚𝑀 = 𝑑𝑖𝑚𝒱  

b- the structure equation: 

      Suppose that 𝛽 = (𝑃,𝑀,Π, 𝐺) is a principle fiber bundle, 𝒱 its vertical distribution, and 

the indises: 

𝑖, 𝑗, 𝑘, … = 𝑟 + 1,… , 𝑟 + 𝑛; 

𝑎, 𝑏, 𝑐 = 1,… , 𝑛   ;    𝑛 = 𝑑𝑖𝑚𝑀; 

𝛼, 𝛽, 𝛾 = 1,… , 𝑟 + 𝑛   ;   𝑟 + 𝑛 = 𝑑𝑖𝑚𝑃. 

Suppose that {𝐸1, … , 𝐸𝑟} is a basis of the algebra  . since, 𝜆: 𝒢 ⟶  𝒻 is isomorphisim, then 

the vector fields {𝐸1
′ , … , 𝐸𝑟

′} is a basis of the linear space 𝒻, then, a basis of distribution ℱ =
𝒱 .  

Lemma 𝟏  : 

      Suppose that 𝐷 is  r-dimensional distribution on a smooth manifold 𝑀,then for each basis 

for the 𝐷,we can complete this basis to the basis for the module 𝑋(𝑀) . 
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Lemma 𝟐  : 

      Suppose that {𝐸1, … , 𝐸𝑛} is a basis of the algebra 𝒢, then, [𝐸𝑖 , 𝐸𝑗] = 𝐶𝑗𝑘
𝑖 𝐸𝑘, where 𝐶𝑗𝑘

𝑖  are 

called the constant structure of Lie algebra. 

Lemma 𝟑  : 

      Suppose that {𝜔𝑖} is a basis of a codistribution , then, 

𝑑𝜔𝑖 = 𝜔𝑗
𝑖 ∧ 𝜔𝑗  ;  𝜔𝑗

𝑖 ∈∧1 (𝑃). 

 

Theorem: 

      The structure equation of principle fiber bundle 𝛽 = (𝑃,𝑀, Π, 𝐺) are : 

1) 𝑑𝜔𝑖 = 𝜔𝑗
𝑖 ∧ 𝜔𝑗; 

2) 𝑑𝜔𝑎 = −
1

2
𝐶𝑏𝑐
𝑎 𝜔𝑏 ∧ 𝜔𝑐 + 𝜔𝑗

𝑎 ∧ 𝜔𝑗 . 

 

Connection on principle fiber bundle. 

Definition: 

      A projection from the module 𝑋(𝑃) on the sub module 𝒱 is called a vertical projection. 

Definition: 

      We say that the endomorphisim 𝑓 of the module 𝑋(𝑃) is invariant with respect to the 

action of the Lie group 𝐺 if for each 𝑔 ∈ 𝐺, then, (𝜑𝑔)∗𝜊𝑓 = 𝑓𝜊 (𝜑𝑔)∗  ;  {𝜑𝑔: 𝑃 ⟶ 𝑃}. 

Since 𝐺 acts on 𝑃 of the right, then, 𝜑𝑔 can be written as 𝑅𝑔, and then we have, 

(𝑅𝑔)∗𝜊𝑓 = 𝑓𝜊 (𝑅𝑔)∗  ; 𝑅𝑔(𝑝) = 𝜑𝑔(𝑝) = 𝑝𝑔. 

Definition: 

      A vertical projection which is invariant with respect to the structure group is called a 

connection on principle fiber bundle, this means,Π𝑉 ∈ 𝐸𝑛𝑑(𝑋(𝑃)) is a connection if, 

1) Π𝑉
2 = Π𝑉  ; 

2) 𝐼𝑚Π𝑉 =  𝒱 ; 
3) ∀𝑔 ∈ 𝐺, we have (𝑅𝑔)∗𝜊Π𝑉 = Π𝑉  𝜊 (𝑅𝑔)∗ . 

Definition: 

      Suppose that Π𝑉 is a vertical projection in  , then, Π𝐻 = 𝑖𝑑 − Π𝑉 is the complement 

projection. 
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A distribution ℋ = 𝑘𝑒𝑟Π𝑉 =𝐼𝑚Π𝐻 is called a horizontal distribution, and the projection Π𝐻 

is called a horizontal projection. 

Proposition:  (H.W) 

     Suppose that Π𝑉 is connection (i.e. Π𝑉 is invariant w.r.t. action of the structure group 𝐺), 

then, Π𝐻 also is invariant w.r.t. action of the structure group 𝐺.  

Theorem: 

      The giving of the connection on a principle fiber bundle 𝛽 = (𝑃,𝑀,Π, 𝐺) is equivalent to 

the setting of distribution ℋ ⊂ 𝑋(𝑃), such that: 

1) 𝑋(𝑃) = 𝒱⨁ℋ ; 
2) (𝑅𝑔)∗𝜊Π𝐻 = Π𝐻𝜊(𝑅𝑔)∗ . 

 

Definiti0n: 

      The isomorphisim 𝜆: 𝒢 ⟶ 𝒻 generates an isomorphisim : 

∧= 𝑖𝑑⨂𝜆⨂:𝐶∞(𝑃)⨂𝒢 ⟶ 𝐶∞(𝑃)𝒻 = ℱ ≅ 𝒱. 

Note that, ∧ (1⨂𝑋) =  𝜆(𝑋) and ∧ (𝑓⨂𝑋) = 𝑓 ∧ (1⨂𝑋) = 𝑓 𝜆(𝑋) ; 𝑓 ∈ 𝐶∞(𝑃) . 

Define 𝜃 =∧−1 𝜊Π𝑉, where Π𝑉 is a connection on 𝑃. 

Since, 𝜆: 𝒢 ⟶ 𝒻 , ∧:𝐶∞(𝑃)⨂𝒢 ⟶ 𝐶∞(𝑃)𝒻 = ℱ ≅ 𝒱 and Π𝑉: 𝑋(𝑃) ⟶  𝒱, 

Then, =∧−1 𝜊Π𝑉: 𝑋(𝑃) ⟶ 𝐶∞(𝑃)⨂𝒢 .  

      A homomorphisim 𝜃 is called a connection form which its value in Lie algebra 𝒢. 

Theorem: 

      The giving of the connection on principle fiber bundle 𝛽 = (𝑃,𝑀,Π, 𝐺) is equivalent to 

the giving the 1- form 𝜃 on a distribution with value in Lie algebra of structure Lie group 

which has the following properties: 

1) 𝜃𝜊 ∧= 𝑖𝑑 ; 
2) 𝜃(𝑓𝑋′) = 𝑓⨂𝑋  ; 𝑋′ ∈ 𝒻 ⊂ 𝑋(𝑃). 

Structure equation of connection. 

Theorem: 

      The principle fiber bundle 𝛽 = (𝑃,𝑀 Π, 𝐺) has connection iff the system {𝜔𝑎} satisfies 

the following relation: 

𝑑𝜔𝑎 = −
1

2
𝐶𝑏𝑐
𝑎 𝜔𝑏 ∧ 𝜔𝑐 +

1

2
𝑅𝑖𝑗
𝑎𝜔𝑖 ∧ 𝜔𝑗      ………(∗) 
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Definition: 

      The relations: 

𝑑𝜔𝑖 = 𝜔𝑗
𝑖 ∧ 𝜔𝑗  ; 

𝑑𝜔𝑎 = −
1

2
𝐶𝑏𝑐
𝑎 𝜔𝑏 ∧ 𝜔𝑐 +

1

2
𝑅𝑖𝑗
𝑎𝜔𝑖 ∧ 𝜔𝑗  . 

Are called the structure equation of connection(the first and second group respectively). 

Remark: 

      Let 𝑋 ∈ 𝑋(𝑃), then, 𝑋 = 𝑋𝑎𝐸𝑎
′ + 𝑋𝑖𝐸𝑖 . 

Remark: 

     Let 𝜃 be a connection form,  

𝜃(𝑋) = 𝜃(𝑋𝑎𝐸𝑎
′ ) + 𝜃(𝑋𝑖𝐸𝑖) = 𝑋

𝑎⨂𝐸𝑎 = 𝜔
𝑎(𝑋)⨂𝐸𝑎 = 𝜔

𝑎⨂𝐸𝑎(𝑋) ⟹ 𝜃 = 𝜔𝑎⨂𝐸𝑎 , 

Then, 𝜃 = 𝑑𝜔𝑎⨂𝐸𝑎 . 

Denoted by [𝜃1, 𝜃2] =𝜔𝑏 ∧ 𝜔𝑐⨂[𝐸𝑏 , 𝐸𝑐],2 which is called the interior commutator of the 

forms 𝜃1and 𝜃2 .then the relation (∗) can be written as the following form: 

𝑑𝜃 = −
1

2
[𝜃1, 𝜃2] + 𝜙 

Where, 𝜙 =
1

2
𝑅𝑖𝑗
𝑎𝜔𝑖 ∧ 𝜔𝑗⨂𝐸𝑎 is 2-form on 𝑃 with value in the Lie algebra 𝒢 which is called 

curvature. 

Principle fiber bundle of frames. 

Definition: 

      Let 𝑀 be n-dimensional smooth manifold, 𝑚 ∈ 𝑀 .Consider the space 𝑇𝑚(𝑀),Let 

{𝑒1, … , 𝑒𝑛}be a basis of 𝑇𝑚(𝑀), the set(m; 𝑒1, … , 𝑒𝑛) is called a frame.  

Denoted by 𝐵𝑀 ={(m; 𝑒1, … , 𝑒𝑛) ∶  𝑚 ∈ 𝑀} the set of all frames, then there exist a 

surjective map Π:𝐵𝑀 ⟶ 𝑀.The subset Π−1(𝑚) ={all frames which based at the point 𝑚}, 
which is called a fiber over 𝑀. 

Remark: 

      The Lie group 𝐺𝐿(𝑛,ℝ) acts freely on 𝐵𝑀 on the right by the form: 

(m; 𝑒1, … , 𝑒𝑛)𝑔 = (𝑚; 𝑔1
𝑖1𝑒𝑖1 , … , 𝑔𝑛

𝑒𝑛𝑒𝑖𝑛) ; 𝑔 = 𝑔𝑗
𝑖 . 

This action is freely, because,∃𝑝 and𝑝𝑔 = 𝑝 ⟹ 𝑔 = 𝐼𝑛; 
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(m; 𝑒1, … , 𝑒𝑛)𝑔 = (𝑚; 𝑔1
𝑖1𝑒𝑖1 , … , 𝑔𝑛

𝑒𝑛𝑒𝑖𝑛) ⟹ 𝑒𝑘 = 𝑔𝑘
𝑗
𝑒𝑗 ⟹  𝑔 = 𝐼𝑛. 

    If 𝑃1and 𝑃2 are two frames then, Π(𝑃1) = Π(𝑃2 ) ⟺ ∃𝑔 ∈ 𝐺𝐿(𝑛,ℝ) such that: 𝑃1𝑔 = 𝑃2 ,  

Where 𝑔 is the transition matrix from the frame 𝑃1 = (m; 𝑒1, … , 𝑒𝑛) to the frame 𝑃2 =
(𝑚; 𝑒1

′ , … , 𝑒𝑛
′ ). 

Definition: 

      Let (𝑈, 𝜑) be a local chart in 𝑀 with coordinates (𝑥1, … , 𝑥𝑛). We define a map 

𝐹𝑈: Π
−1(𝑈) ⟶  𝐺𝐿(𝑛,ℝ) by 𝐹𝑈(𝑝) = 𝑔, where 𝑔 is the transition matrix from the canonical 

frame (𝑚;
𝜕

𝜕𝑥1
, … ,

𝜕

𝜕𝑥𝑛
) to the frame (m; 𝑒1, … , 𝑒𝑛). 

Define a map 𝜓𝑈: Π
−1(𝑈) ⟶  𝑈 × 𝐺𝐿(𝑛,ℝ) by the form: 

𝜓𝑈(𝑝) = ( Π(𝑝), 𝐹𝑈(𝑝)). 

We have now 𝐵(𝑀) = (𝐵𝑀,𝑀,Π, 𝐺𝐿(𝑛,ℝ)) is a principle fiber bundle with base space 𝑀 

and canonical projection Π and structure group 𝐺𝐿(𝑛, ℝ). This principle fiber bundle is 

called is a principle fiber bundle of frames. 

Remark: 

   Let 𝑀 be an n-dimension smooth manifold,𝑚 ∈ 𝑀 be any point,P = (m; 𝑒1, … , 𝑒𝑛) be any 

frame with based at 𝑚, then P can be identify with the linear isomorphisim 𝜌:ℝ𝑛 ⟶ 𝑇𝑚(𝑀) 

Which defined by the form: 

𝜌(𝑥1, … , 𝑥𝑛) = 𝑋𝑖𝑒𝑖 . 

Definition:  

      Let 𝐵(𝑀) = (𝐵𝑀,𝑀,Π, 𝐺𝐿(𝑛,ℝ)) be a principle fiber bundle of frames and 𝜌:ℝ𝑛 ⟶

𝑇𝑚(𝑀) be a linear isomorphisim on 𝐵𝑀, defined 1-form 𝜔 with value in the space ℝ𝑛 by the 

form:𝜔𝑝(𝑋) = 𝜌
−1𝜊(Π∗)𝑝(𝑋) ; 𝑋 ∈ 𝑇𝑝(𝐵𝑀). 

Π:𝐵𝑀 ⟶ 𝑀 generates (Π∗)𝑝: 𝑇𝑝(𝐵𝑀) ⟶ 𝑇Π(𝑝)(𝑀) = 𝑇𝑚(𝑀). 

𝜌:ℝ𝑛 ⟶ 𝑇𝑚(𝑀) and 𝜔𝑝: 𝑇𝑝(𝐵𝑀) ⟶ ℝ𝑛. 

The 1-form 𝜔 which is defined above is called mixture form. 

Definition:  

      The r-form 𝜔 ∈∧𝑟 (𝑃) is called a horizontal form if 𝜔(𝑋) = 0 , ∀𝑋 ∈ 𝒱. 
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Theorem: 

      In the first and the second group of the structure equation of the principle fiber bundle of 

frames are given by the forms: 

𝑑𝜔𝑖 = −𝜔𝑗
𝑖 ∧ 𝜔𝑗  ; 

𝑑𝜔𝑗
𝑖 = −𝜔𝑘

𝑖 ∧ 𝜔𝑗
𝑘 + 𝜔𝑗𝑘

𝑖 ∧ 𝜔𝑘 . 

Fundamental theorem of tensors analysis. 

      The setting of tensor field 𝑡 of type (r,s) on smooth manifold M equivalent to the setting 

smooth functions {𝑡𝑖1…𝑖𝑟
𝑗1…𝑗𝑠} on the principle fiber bundle of frames, which are satisfies: 

𝑑𝑡𝑖1…𝑖𝑟
𝑗1…𝑗𝑠 − 𝑡𝑘𝑖2…𝑖𝑟

𝑗1…𝑗𝑠 𝜔𝑖1
𝑘 − ⋯− 𝑡𝑖1…𝑖𝑟−1𝑘

𝑗1…𝑗𝑠 𝜔𝑖𝑟
𝑘 + 𝑡𝑖1…𝑖𝑟

𝑘𝑗2…𝑗𝑠𝜔
𝑘

𝑗1 + ⋯+ 𝑡𝑖1…𝑖𝑟
𝑗1…𝑗𝑠−1𝑘𝜔

𝑘

𝑗𝑠  

= 𝑡𝑖1…𝑖𝑟𝑘
𝑗1…𝑗𝑠 𝜔𝑘 . 

 where{ 𝑡𝑖1…𝑖𝑟𝑘
𝑗1…𝑗𝑠 } are the system of smooth functions equal to the coorsponding components 

of the tensor 𝑡. 

Structure equation of connection in principle fiber bundle of 

frames. 

Lemma: 

      Let (𝑃,𝑀, Π, 𝐺) be a principle fiber bundle. Suppose that 𝜃1and 𝜃2are two connection 

forms on  (𝑃,𝑀, Π, 𝐺), then, 𝜉 = 𝜃1 − 𝜃2 is a horizontal form, this mean: 

𝜉(𝑋) = 0∀𝑋 ∈ 𝒱 . 

Proof: 

      Since 𝜃1and 𝜃2 are two connection forms, then, 𝜃1𝜊 ∧= 𝜃2𝜊 ∧= 𝑖𝑑 .If 𝐺 acts on 𝑃 on the 

right, : 𝒢 ⟶ 𝑋(𝑃) , 𝜆(𝑋) = 𝑋′ , then,∧= 𝑖𝑑⨂𝜆: 𝐶∞(𝑃)⨂𝒢 ⟶ 𝐶∞(𝑃)⨂𝑋(𝑃), 

𝜃1𝜊 ∧= 𝜃2𝜊 ∧= 𝑖𝑑 means (𝜃1 − 𝜃2) 𝜊 ∧= 0 

But we know that ℱ = 𝐶∞(𝑃)⨂𝒻 = 𝒱 

Then, ∀𝑋 ∈ 𝒱 , ∃𝑌 ∈ 𝐶∞(𝑃)⨂𝒢 such that ∧ 𝑌 = 𝑋 

(𝜃1 − 𝜃2)(𝑋) = (𝜃1 − 𝜃2)(∧ 𝑌) = (𝜃1 − 𝜃2)𝜊 ∧ (𝑌) = 0 , ∀𝑋 ∈ 𝒱 . 
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The structure equation. 

      Suppose that (𝐵(𝑀),𝑀, Π, 𝐺) is a principle fiber bundle of frames, and suppose that 𝜃 is 

a connection: 

𝜃𝑗
𝑖 − 𝜔𝑗

𝑖 = 𝛾𝑗𝑘
𝑖 𝜔𝑘  ;   {𝛾𝑗𝑘

𝑖 } ∈ 𝐶∞(𝐵(𝑀)) 

⟹ 𝜃𝑗
𝑖 −𝜔𝑗

𝑖 = 𝛾𝑗𝑘
𝑖 𝜔𝑘 

According to the first group of structure equation of principle fiber bundle of frames we have 

𝑑𝜔𝑖 = −𝜔𝑗
𝑖 ∧ 𝜔𝑗 = −𝜃𝑗

𝑖 ∧ 𝜔𝑗 + 𝛾𝑗𝑘
𝑖 𝜔𝑘 ∧ 𝜔𝑗  

= −𝜃𝑗
𝑖 ∧ 𝜔𝑗 + 𝛾[𝑗𝑘]

𝑖 𝜔𝑘 ∧𝜔𝑗 = −𝜃𝑗
𝑖 ∧ 𝜔𝑗 − 𝛾[𝑗𝑘]

𝑖 𝜔𝑗 ∧ 𝜔𝑘 

Where the bracket [  ] refer to alternative of the indexes 𝑖and 𝑗. 

𝑑𝜔𝑖 = −𝜃𝑗
𝑖 ∧ 𝜔𝑗 +

1

2
𝛿𝑗𝑘
𝑖 𝜔𝑗 ∧ 𝜔𝑘    … (1) 

Where, 𝛿𝑗𝑘
𝑖 = −2𝛾[𝑗𝑘]

𝑖 .The equation (1) is called the first group of structure equation of 

connection. 

Similar to the principle fiber bundle, we can write 

𝜔 = 𝜔𝑖⨂𝜀𝑖 (mixture form with respect to the canonical basis). 

𝑑𝜔 = 𝑑𝜔𝑖⨂𝜀𝑖 = −𝜃𝑗
𝑖 ∧𝜔𝑗⨂𝜀𝑖 +

1

2
𝛿𝑗𝑘
𝑖 𝜔𝑗 ∧ 𝜔𝑘⨂𝜀𝑖 

𝑑𝜔 = −𝜃 ∧ 𝜔+ Ω. 

Where Ω = +
1

2
𝛿𝑗𝑘
𝑖 𝜔𝑗 ∧ 𝜔𝑘⨂𝜀𝑖 is 2-form in 𝐵𝑀with value in ℝ𝑛 which is called the torsion 

form of connection. on the other hand, remember the second group of structure equation of 

connection in principle fiber bundle , which has the form: 

𝑑𝜔𝑎 = −
1

2
𝐶𝑏𝑐
𝑎 𝜔𝑏 ∧ 𝜔𝑐 +

1

2
ℛ𝑘ℓ
𝑎 𝜔𝑘 ∧ 𝜔ℓ 

 

In the case of principle fiber bundle of frames 𝜃𝑗
𝑖
 play the role of 𝜔𝑎 , then, 

𝑑𝜃𝑗
𝑖 = −𝜃𝑘

𝑖 ∧ 𝜃𝑗
𝑘 +

1

2
ℛ𝑗𝑘ℓ
𝑖 𝜔𝑘 ∧ 𝜔ℓ   … (2) 
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Or 𝑑𝜃 = −
1

2
[𝜃, 𝜃] + 𝜙 

The equation (2) is called the second group of structure equation of connection in principle 

fiber bundle of frames, where, 

𝜙 =
1

2
ℛ𝑗𝑘ℓ
𝑖 𝜔𝑘 ∧ 𝜔ℓ and 

1

2
[𝜃, 𝜃] = 𝜃𝑘

𝑖 ∧ 𝜃𝑗
𝑘

. 

From the above disscusion, we get the following theorem: 

Theorem: 

      The complete group of the structure equations of connection in the principle fiber bundle 

of frames has the form: 

1) 𝑑𝜔 = −𝜃 ∧ 𝜔 + Ω ; 

2) 𝑑𝜃 = −
1

2
[𝜃, 𝜃] + 𝜙 .  

Where, . 𝛺 = +
1

2
𝛿𝑗𝑘
𝑖 𝜔𝑗 ∧ 𝜔𝑘⨂𝜀𝑖  , 𝛷 =

1

2
ℛ𝑗𝑘ℓ
𝑖 𝜔𝑘 ∧ 𝜔ℓ⨂𝐸𝑖

𝑗
 are the torsion and curvature 

forms of connection respectively. 

Theorem:   

      The connection in the principle fiber bundle of frames induce two tensor lields, the first 

tensor of type (2,1) which is called a torsion tensor of connection, and the second tensor of 

type (3,1) which is called a curvature tensor of connection. 

Problem: 

      Find ∇𝛿𝑗𝑘
𝑖  and ∇ℛ𝑗𝑘ℓ

𝑖
 . 

Definition:  

      A smooth manifold which fixed connection on its principle fiber bundle of frames is 

called affine connection space. 

Remark: 

      Let M be an n-dimensional affine connection space, 𝜃 be a connection form. Let 𝑡 be a 

tensor of type (𝑟, 𝑠) on M, according to the fundamental theorem of tensor analysis, the 

setting of tensor 𝑡 on M equivalent to the setting a system of functions 𝑡^={𝑡𝑖1…𝑖𝑟
𝑗1…𝑗𝑠} on 

𝐵𝑀 which satisfies the equation: 

 ∇𝑡𝑖1…𝑖𝑟
𝑗1…𝑗𝑠 = 𝑡𝑖1…𝑖𝑟𝑘

𝑗1…𝑗𝑠 𝜔𝑘. 

Where, { 𝑡𝑖1…𝑖𝑟𝑘
𝑗1…𝑗𝑠 } are smooth fuctions which are given on 𝐵𝑀: 
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∇𝑡𝑖1…𝑖𝑟
𝑗1…𝑗𝑠 = 𝑑𝑡𝑖1…𝑖𝑟

𝑗1…𝑗𝑠 − 𝑡𝑘𝑖2…𝑖𝑟
𝑗1…𝑗𝑠 𝜃𝑖1

𝑘
−⋯− 𝑡𝑖1…𝑖𝑟−1𝑘

𝑗1…𝑗𝑠 𝜃𝑖𝑟
𝑘
+ 𝑡𝑖1…𝑖𝑟

𝑘𝑗2…𝑗𝑠𝜃𝑘
𝑗1 +⋯+ 𝑡𝑖1…𝑖𝑟

𝑗1…𝑗𝑠−1𝑘𝜃𝑘
𝑗𝑠 

= 𝑡𝑖1…𝑖𝑟𝑘
𝑗1…𝑗𝑠 𝜃𝑘 . 

The functions {𝑡
𝑖1…𝑖𝑟𝑘

𝑗1…𝑗𝑠 } are tensors of type (𝑟 + 1, 𝑠) this mean ∇𝑡𝑖1…𝑖𝑟
𝑗1…𝑗𝑠 is a tensor of type 

(𝑟 + 1, 𝑠) which is called a covariant differential in the given connection and will be defined 

by ∇𝑡. 

Definition:  

      A tensor field ∇𝑋𝑡 is called a covariant derivative of the tensor field 𝑡 in the direction of 

the vector field 𝑋, and the vector field ∇𝑋: 𝜏(𝑀) ⟶ 𝜏(𝑀) is called an operator of covariant 

derivative in the direction of the vector field 𝑋. 

Theorem:   

      The operator ∇𝑋 has the following properties: 

1) ∇𝑋𝑓 = 𝑋𝑓; 

2) ∇𝑓𝑋+𝑔𝑌𝑡 = 𝑓∇𝑋𝑡 + 𝑔∇𝑌𝑡; 

3) ∇𝑋(𝑡1 + 𝑡2) = ∇𝑋(𝑡1) + ∇𝑋(𝑡2); 
4) ∇𝑋(𝑡1⨂𝑡2) = ∇𝑋(𝑡1)⨂𝑡2 + 𝑡1⨂∇𝑋(𝑡2). 

Where 𝑋, 𝑌 ∈ 𝑋(𝑀) , 𝑓, 𝑔 ∈ 𝐶∞(𝑀) , 𝑡1, 𝑡2, 𝑡 ∈ 𝜏(𝑀). 
 

Corollary: 

      In the space M of affine connection defined operator ∇:𝑋(𝑀) × 𝑋(𝑀) ⟶ 𝑋(𝑀) which 

has the following properties: 

1) ∇(𝑓𝑋 + 𝑔𝑌, 𝑍) = 𝑓∇(𝑋, 𝑍) + 𝑔∇(Y, Z); 
2) ∇(𝑋, 𝑌 + 𝑍) = ∇(𝑋, 𝑌) + ∇(𝑋, 𝑍); 
3) ∇(𝑋, 𝑓𝑌) = 𝑋(𝑓)𝑌 + 𝑓∇(X, Y). 

Where X, Y, 𝑍 ∈ 𝑋(𝑀) and 𝑓, 𝑔 ∈ 𝐶∞(𝑀). 

 

Definition: 

      The operator ∇ which has the above properties is called Kozel's operator, and we have 

∇(𝑋, 𝑌) = ∇𝑋𝑌. 

Remark: 

      The connection which identify with the Kozel's operator is called affine connectionor 

linear connection of the manifold  M . 
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Theorem: 

      The setting of  affine connection on smooth manifold is equivalent to the setting of 

Kozel's operator  ∇: 𝑋(𝑀) × 𝑋(𝑀) ⟶ 𝑋(𝑀)which has the following properties: 

1) ∇𝑓𝑋+𝑔𝑌𝑍 = 𝑓∇𝑋𝑡 + 𝑔∇𝑌𝑍; 

2) ∇𝑋(𝑌 + 𝑍) = ∇𝑋(𝑌) + ∇𝑋(𝑍); 
3) ∇𝑋(𝑓𝑌) = 𝑋(𝑓)𝑌 + 𝑓∇𝑋. 

Where X, Y, 𝑍 ∈ 𝑋(𝑀) and 𝑓, 𝑔 ∈ 𝐶∞(𝑀). 

Theorem: 

      Let M be the space of affine connection ∇, and 𝑆,ℛ are torsion and curvature tensors 

respectively of this connection, then: 

1) 𝑆(𝑋, 𝑌) = ∇𝑋𝑌 − ∇𝑌𝑋 − [𝑋, 𝑌]; 

2) ℛ(𝑋, 𝑌)𝑍 = ([∇𝑋, ∇𝑌] − ∇[𝑋,𝑌])𝑍. 

 Where X, Y, 𝑍 ∈ 𝑋(𝑀). 

Remark: 

      This theorem (above) explain that torsion and curvature tensors can be written in the 

terms of Kozel's operator. 

G- Structure of the first order on smooth manifold. 

      We call to, β1 = (𝑃1, 𝑀, Π1, 𝐺1) and β2 = (𝑃2, 𝑀, Π2, 𝐺2) are two principle fiber bundles 

on a smooth manifold 𝑀.A homomorphisim from β1 in to β2 is a pair (𝑓, 𝜌), where 𝑓: 𝑃1 ⟶
𝑃2 is a smooth map and 𝜌: 𝐺1 ⟶ 𝐺2 is a homomorphisim of Lie groups such that: 

1) The following diagram is commutative : 

                                                                 𝑃1       𝑓         𝑃2    

     Π1                 Π2 

    𝑀 

2) 𝑓(𝑝𝑔) = 𝑓(𝑝)𝜌(𝑔) 

 

 

Remark: 

      In particular, if (𝑃1, 𝑓) is a sub manifold of 𝑃2 and (𝐺1, 𝜌) is a Lie sub group of Lie group 

𝐺2then, β1 = (𝑃1, 𝑀, Π1, 𝐺1)  is called a sub fiber bundle of β2 = (𝑃2, 𝑀, Π2, 𝐺2). 

Definition: 
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      The sub fiber bundle  β1 = (𝑃1, 𝑀, Π1, 𝐺1)  is called a reduction of the fiber bundle β2 =
(𝑃2, 𝑀, Π2, 𝐺2) by a sub group (𝐺1, 𝜌). 

Remark: 

      For us, the most interest is the case, where β2 = (𝐵𝑀,𝑀,Π, 𝐺𝐿(𝑛,ℝ)) is a principle fiber 

bundle of frames and β1 = (𝑃,𝑀, Π̃, 𝐺) its sub fiber bundle , such that:𝑓: 𝑃 ⊂ 𝐵𝑀 is the 

inclusion map, Π̃ = Π|𝑃, and 𝐺 is a linear group. This means Lie sub group of the general 

linear group with respect to the inclusion 𝜌: 𝐺 ⊂ 𝐺𝐿(𝑛,ℝ). 

Example: 

      If 𝐺 =  𝑂(𝑛, ℝ) ⊂ 𝐺𝐿(𝑛, ℝ),and 

 𝑃 = {all orthogonal frames of smooth manifold 𝑀} ⊆ 𝐵𝑀={all frames of 𝑀}. 

In this case β1 = (𝑃,𝑀, Π̃, 𝐺) will be sub fiber bundle. 

Definition: 

      The sub fiber bundle (𝑃,𝑀, Π̃, 𝐺) which is defined as above (this means reduction of the 

principle fiber bundle of frames over the smooth manifold 𝑀 by the given subgroup) is 

called 𝐺-structure of the first order over 𝑀. 

 

 

 

 


